
System Development
for Java

with the z2-Environment

Version 2.8

Last updated on:
May 1, 2021

Copyright by

ZFabrik Software GmbH & Co. KG

Walldorf, Germany

1. Introduction..2
1.1. What is the z2-Environment..3
1.2. Online resources..3

2. Installing and Understanding a Z2 Home...4
2.1. The z2-base Distribution...4
2.2. Home install in 2 minutes...4
2.3. Folder Structure of a Z2 Home...5
2.4. Starting and synchronizing...6
2.5. Important System Properties...7
2.6. The Base Repository..9
2.7. Worker Processes and Home Layouts..9

3. Anatomy..10
3.1. Working on-demand...10

3.1.1. The Resource Management System...11
3.1.2. The z2 Command Line, the Embedded Runtime and the Main Runner.......................11

3.2. Components and Component Repositories...13
3.2.1. Synchronization with updates..15
3.2.2. File system support...15
3.2.3. Subversion support..15
3.2.4. Git support...16
3.2.5. Maven Repository Support...16
3.2.6. Component Types and Component Factories..18
3.2.7. Dynamic Component Properties...19
3.2.8. Using Dynamic Property Expressions with JEXL3..20
3.2.9. Java Naming and Directory Interface (JNDI) support..21
3.2.10. Link Components and Component Linking..22

3.3. Unit of Work and transaction management...23
4. Constructing a Z2 system..24

4.1. Add-ons..24
5. Developing with the z2-Environment..24

5.1. A note on what JDK to use...25
5.2. Workspace development using the Dev Repository...25

5.2.1. Recommended folder structure..26
5.3. The Eclipsoid Plug-in..27
5.4. Using the Offline Mode..28

5.4.1. How the offline mode is used..28
5.4.2. Enabling Offline mode at start time...29
5.4.3. Toggling Offline Mode during Development..29

5.5. In-container unit testing using Z2 Unit..29
5.6. Retrieving jars from Z2...29

6. Managing z2..30
6.1. The Basic Admin Interface...30
6.2. The JMX Remoting Command Line Interface...32

7. Enhanced Basis Features..33
7.1. The Binary Hub Component Repository...33
7.2. The Gateway for Zero-Downtime-Upgrades..33

8. Component type reference...34
8.1. Core component properties..34
8.2. “Any” components (core)...35

1

8.3. Component Factories (core)..35
8.4. Data Source components (z2-base)...36

8.4.1. Data Source Specific Configuration..37
8.4.2. Data Source Types...37

8.5. File system component repositories (core)..38
8.6. GIT component repositories (core)..39
8.7. Java components (core)...40

8.7.1. Classloaders...40
8.7.2. Includes...41

8.8. JUL configurations (z2-base)..44
8.9. Link Components..44
8.10. Log4J configurations (z2-base)..45
8.11. Main Program Components (core)..45
8.12. Maven component repositories (z2-base)...46
8.13. Maven component repository fragments (z2-base)..48
8.14. Subversion component repositories (core)..48
8.15. System States (core)..49
8.16. Web applications (z2-base)..51
8.17. Web servers (z2-base)...52
8.18. Worker Processes (z2-base)...53

8.18.1. System Property Propagation from Home to Worker Process.......................................54
8.18.2. Special considerations when specifying VM options using blanks and quotes.......55

9. Securing z2 for Production Use...56

1. Introduction

Developing applications for the Java platform typically involves a number of steps that are needed
to be performed before execution. At the least it is required to run a Java compiler that turns Java
source code into executable byte code.

Coding environments like the Eclipse or the IntelliJ Integrated Development Environments do a
great job of hiding these operations to the user for simple applications. When applications become
more complex though, modularization needs and team development approaches ask for more
sophisticated tools to make sure that growing system complexity can be managed.

The traditional development approach for Java applications resembles that of Desktop applications.
Apart from compiling source code into an executable representation, execution of additional
operations, the build process, needs to be completed before execution. This includes resolution of
module dependencies and packaging of generated as well as retrieved artifacts into some
deployable file format that will be installed (deployed) in some execution environment. For Java
applications the latter is either a standalone Java Virtual Machine (JVM) or an application server.

For Desktop applications that can assume very little about their execution environment it is a
necessity to be self-contained and easily distributable in some file format.

The situation for Intranet and Internet applications is different. A major part of the life cycle of a
business application installation consists of change: ongoing development, customization,
extension, and repair.

All but the most trivial business applications are a composition of subsystems that make strong
assumptions on the presence and behavior of other subsystems – all together forming a software
system that offers a wide range of access methods, performs recurring background jobs, integrates
with other systems in whole landscape of systems, and operates over a shared and evolving data
asset.

2

Platforms that are heavily geared towards development and operation of business applications, such
as SAP's ABAP environment or Oracle's PL/SQL platform therefore take a different view. Instead
of mimicking the concept of a most generic operating system that runs largely independent, locally
installed binary applications, the focus of these environments is to perform the functions of a large
highly interconnected software system at scale, agnostic to the single machine, with as little local
configuration as possible. Instead of being the end of a tool chain that is a mere executor of binary
code in some undecipherable interplay, a centrally defined, customizable and extensible system
definition in the form of source code and configuration that is executable without build process
complexities by arbitrarily many machine nodes running the platform is crucial to managing
software life cycle complexity at scale.

The z2-Environment brings these qualities to the world of Java applications. We call it the system-
centric approach.

1.1. What is the z2-Environment

Practically speaking the z2-Environment is a Java-based runtime environment that knows how to
update itself from source code and configurations stored in repositories of various technologies,
including source control systems like Git and Subversion or just a plain old file system.

Z2 defines an extensible component and modularization model that, based on few basic paradigms
and interfaces, allows to construct full-blown modular application systems.

The z2-Environment can be used to build Java EE Web applications as well as standalone Java
applications without restricting the use of third-party libraries and popular frameworks like the
Spring Framework, Hibernate/JPA, and many more.

Z2 is strictly implemented on Java:

• Versions before 2.4 require Java 6 and support Java 6 and Java 7 language levels.

• As of version 2.4, Z2 requires Java 8,

• As of version 2.6, Z2 requires Java 9 and supports Java 9 and Java 10,

• As of version 2.7, Z2 requires Java 9 and supports Java 9, Java 10, and Java 11.

• As of version 2.8, Z2 requires Java 9 and supports Java 9, and higher up to Java 13.

When using a higher, future Java version, version 2.5 will fall back to assuming Java 8 language.
Version 2.6 and version 2.7 will assume the language level of whatever is the highest supported
version possible (I.e. Java 11 in the presence of Java 11 or version 2.7).

1.2. Online resources

Z2 can be installed and tried out in a matter of minutes. There are various how-tos and samples
available that explain and demonstrate the use of Z2.

This documentation and high-level information can be found in the Wiki at

https://redmine.z2-environment.net/projects/z2-environment/wiki

2. Installing and Understanding a Z2 Home

In order to access component repositories and to implement its component and modularization
model at runtime, the elementary capabilities of Z2 need to be installed as a normal Java program in
binary form. The most fundamental features of Z2 are implemented in the z2 core. It's source code

3

https://redmine.z2-environment.net/projects/z2-environment/wiki

and its simple build script, including instructions, can be found on the Wiki site. We call a local
installation of a z2-core a z2 Home.

In its basic form, the z2 core knows little more than running Java main programs from source in a
modular context. In order to turn a z2 home into a node of a capable system we need to connect it to
repositories defining further component types, libraries, and applications.

This is done by declaring component repository components as will be explained below. Choosing
remote repositories will give you a system that is centrally defined and scales easily with consistent
updates.

Choosing only local repositories will leads to system that can be maintained and distributed like a
Scripting language application, albeit being implemented using Java.

2.1. The z2-base Distribution

Starting with version 2.6, when you download z2 for installation, you are encouraged to download
the z2-base distribution from the Web site. The z2-base distribution does not only contain the z2
core but also a locally configured z2-base.base repository in the base folder (see below), providing
the Jetty Web Container and other components that are useful for most anything you might want to
do, without requiring remote access to the z2-base Git repositories.

The alternative is to use the z2-core distribution that only contains the z2-core binaries and has a
remote-configured z2-base repository. For larger applications where the need for z2 home updates
should be minimized this would be the right choice.

To sum it up:

Distribution Contains When to use

z2-base The z2 core binaries and a locally
configured z2-base.base repository.

Getting started. Needs no remote access to
anywhere and can be easily extended using
local modules (see #develop).

z2-core The z2 core binaries and a remote
configured z2-base.base repository.

Updating or setting up a distributed system
that is configured and extended using remote
repositories.

2.2. Home install in 2 minutes

Generally you install a z2 Home by downloading and unpacking a z2 base distribution from the
Web site. Distribution ZIP an TAR archives are named including the distribution base name (e.g.
z2-base), the version branch, as well as the actual build time stamp.

For example, from a linux command line prompt you might run:

mkdir install
cd install
wget http://download.z2-environment.net/z2/z2-base-v2.8.tar.gz
tar xf z2-base-v2.8.tar.gz
z2-base.core/bin/gui.sh

installing a z2 Home at z2-base.core in the install folder and starting the development graphical user

4

interface.

2.3. Folder Structure of a Z2 Home

Typically a home installation folder has the following file and folder structure:

bin
This folder holds the actual z2 start code and shell scripts. This is from where you run z2.

local
This folder holds all core modules that have been pre-compiled as part of the z2-core build.
Normally you do not need to touch anything in here.

base
When using the z2-base distribution this folder holds the complete z2-base.base modules. The z2-
base.base repository is the application foundation on z2 and holds the Jetty web container and some
fundamental libraries and applications.

config
The config folder is another z2 component repository meant to be used to define modules that tweak
or add configuration to z2, in particular other sources of modules. By default there is a repos
module that binds the base repo (see one row up).

licenses
This folder holds a reference or copy of all licenses per library and module that is part of the
distribution you installed. A browsable version of this content can be found on release page on the
Wiki. For example, for version 2.8, go here:

https://redmine.z2-environment.net/projects/z2-environment/wiki/V2 8 -Licenses

Note: To our knowledge, there are no non-business-friendly OSS licenses, but you need to check for
yourself.

LICENSE.txt and THIRD-PARTY-LICENSES.txt

The license you retrieved z2 under, the Apache 2 Open Source Software license, as well as
information on how to find out about third-party licenses, just as above.

work

During runtime z2 needs to store essentially transient data like compilation results or other cached
data. While a running z2 may not be able to handle a missing work folder, it is generally ok and
sometimes even helpful to remove all transient work data when z2 is down. This folder is generated
during runtime and not part of the distribution.

data

The data folder is used by applications that need to maintain local, file-system stored data, for
longer. In short: The data folder should not be deleted casually and, depending on your application,
it may be advisable to have it point to particularly reliable storage.

5

https://redmine.z2-environment.net/projects/z2-environment/wiki/V27-Licenses
https://redmine.z2-environment.net/projects/z2-environment/wiki/V27-Licenses
https://redmine.z2-environment.net/projects/z2-environment/wiki/V27-Licenses

logs

The place to write log files to. Z2 itself writes its log output into logs/home_0_0.log.

A few files are important in the bin folder:

runtime.properties

The properties stored in runtime.properties are loaded by the home process and all worker processes
into the respective JVM system properties. See also #systemProps.

launch.properties

A z2 home can be started in different “modes”. This is a convenience feature to simplify the
application of various Virtual Machine settings for the home process (many of which propagate to
worker processes – including debug settings).

A typical launch.properties file looks like this:

#
alternative VM profiles for the home process
VM opts
default
#
home.vmopts=\

-Xmx64M -cp z.jar \
-Dcom.sun.management.config.file=management.properties \
-Djava.util.logging.config.file=logging.properties \
-Dcom.zfabrik.home.concurrency=5 \
-Dcom.zfabrik.home.start=environment/home

override when -mode debug
home.vmopts.debug=-Xdebug -Xnoagent -
Xrunjdwp:transport=dt_socket,suspend=n,server=y,address=5000 -
Dworker.debug=true

override when -mode verbose
home.vmopts.verbose=-verbose:gc -XX:+PrintClassHistogram

2.4. Starting and synchronizing

In order to start Z2 in server mode, change into the folder Z2_HOME/bin

If you prefer a simple console view, you can start the z2 Environment by issueing the command
./go.sh (on Linux/Mac OS) or go.bat (on Windows).

There are several options you may use to alter the default behavior. Most notably, if you start using

6

./go.sh -mode:debug

the z2 Environment will start with debug settings (see launch.properties above).

If you start using

./go.sh - -np

the home process will end up showing an input prompt – which is favorable to running as
background process (e.g. using nohup or via an init script on Linux). And of course, if you run

./go.sh -mode:debug - -np

you will get both.

The general syntax is

./go.sh <parameters for the launcher> - <parameters for the home process>

where the launcher is the small program that computes the actual Java command line as indicated in
the previous section.

When running the z2 Environment locally, in particular during application development, it is
convenient to have a graphical user interface (GUI). Adding the gui option achieves just that. For
example

./go.sh -mode:debug - -gui

starts the home process with a Java GUI that allows to scroll through the home and worker
processes console output and to manage synchronizations as well as the current list of worker
processes.

The gui shell command is a shortcut that spares you the gui option. I.e

./gui.sh

is a short version of ./go.sh - -gui.

2.5. Important System Properties

Some system properties can be set on the command line (or launch.properties) or for all z2
processes (e. g. in runtime.properties, see Folder Structure of a Z2 Home).

7

Property name Meaning

com.zfabrik.mode Set to “development” for development mode. Some
features, such as test code and switchboard, will be
ignored unless in development mode. This applies to
the home process and worker processes.

com.zfabrik.offline If set to true, enables the offline mode (see
#offlineMode). Can be toggled on the GUI. Will be
automatically propagated to worker processes at
synchronization.

com.zfabrik.config Name of the system config file to be loaded by all
processes. Defaults to runtime.properties. This applies
to the home process and worker processes.

com.zfabrik.home The z2 Home folder, i.e. where the z2 core is installed.
If not specified when starting Z2, this property is
determined by checking for the environment variable
Z2_HOME. If that is not set either, it defaults to “..”,
one up from the current work folder, which is the
installation folder, if you are in the bin folder of
standard z2 Home folder structure.

com.zfabrik.home.layout Home layout to start by the home process. This
determines the worker processes to start. Technically
this will be appended to the setting
com.zfabrik.home.start. This setting applies only to
the home process.

com.zfabrik.home.start Comma separated list of dependency components (in
particular system states) to prepare at start and after
each synchronization by the home process. This setting
applies only to the home process.

com.zfabrik.java.level Java language level used for compilation. Can be 6,7,8.
Determined by the Java runtime in use.

com.zfabrik.home.autoVerifyInterval Interval in seconds after which the home process will
run a verification (an attempt to attain all target states)
again. Defaults to none (undefined). This applies only
to the home process.

com.zfabrik.dev.local.workspace Setting of the development repository defining where
to check for “armed” modules. See also #devRepo.
Relative to current working folder, which is typically
the Z2_HOME/bin. Typically set to “../../..”, i. e. in
the direct neighborhood of Z2_HOME. This applies
only to the home process.

com.zfabrik.dev.local.depth Setting of the development repository defining how
deep the Dev Repo scans for LOCAL files. Depth is
measured in path distance from the roots set via the
system property com.zfabrik.dev.local.workspace.
Defaults to 3. See also #devRepo.

8

com.zfabrik.repo.mode General repository access mode. If set to “relaxed”,
repositories will attempt to work on previously cached
resources in case of technical repository access failures
during synchronization. If set to “strict” (which is the
default), technical failures will lead to a failure in
synchronization, even if local resources are available.
This feature is useful for offline or bad connectivity
situations.

Note see also #workerProcesses on how to make sure properties are propagated to worker
processes. More important system properties, including some that will be set by z2 at runtime, can
be found in the Foundation class.

2.6. The Base Repository

The Z2 core that gets cloned (or checked out) to create a Z2 Home contains exactly what is needed
to be able to bootstrap a running environment. All further definitions, code, and configuration is
retrieved via additional component repositories that are typically accessed remotely.

The starting point, from the perspective of the Z2 core is the so-called Base Repository.

The Base Repository is defined in
Z2_HOME/local/com.zfabrik.boot.config/baseRepository.properties. By default the Base
Repository points to the z2-base.base repository hosted on z2-environment.net.
When you create your own system, this is an important customization point. We will get to that in
Constructing a Z2 system after we have learned a about Components and Component Repositories.

2.7. Worker Processes and Home Layouts

As indicated above the z2-Environment can manage further JVM processes to better support
heterogeneous load scenarios without compromising the ability to apply updates consistently nor
the stability of the home process

Worker processes are, from a home process perspective, regular z2 components. See also the
documentation of the component type com.zfabrik.worker below. What makes worker processes
special is their virtual machine configurations and the set of target system states to attain (see
com.zfabrik.systemState below). System states, on the other hand, group components to be started
and kept alive during synchronization and verification.

When a worker process component is initialized (we say prepared), it starts a JVM, as configured,
that loads another instance of the z2-environment that in turn attempts to attain the configured target
system states.

Worker processes are typically prepared as dependency of a home layout. A home layout – by
convention - is simply a system state that is used to define the components that are expected to be
prepared in a home process, initially and at the conclusion of a synchronization.

9

http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/util/runtime/Foundation.html

A typical home layout declaration for a single worker process to be executed looks like this:

com.zfabrik.component.type=com.zfabrik.systemState

com.zfabrik.component.dependencies=\
 environment/webWorker

Home layouts are useful to define node specific configurations running individual worker process
configuration combinations from the very same shared configuration store to achieve maximum
functional flexibility in a distributed deployment without distributing configuration information. All
that is required to start z2 with a given home layout is a change in command line settings.

10

3. Anatomy

3.1. Working on-demand

Much of the goodness of the Z2-Environment comes from the fact that it has a pervasive on-
demand architecture. That means that whenever the runtime binds resources it is for a clear and
understandable reason, either because a need (a dependency) has been declared or the specific task
at hand requires so.

While that sounds trivial, it is not so. Unlike implicit “start of everything deployed” or “everything
in a list” approach that many application servers implement, binding of runtime resources from the
potentially large pool of components available in a component repository (see below) happens
strictly as required based on target states configuration – which eventually translates to simplified
on-demand operations of large scale out scenarios with heterogeneous node assignments.

The sibling of the load-on-demand approach is the unload-on-invalidity approach. When repository
definitions have been updated, in development but also in production scenarios, Z2 runtimes can
adapt to the changes made. That requires to understand what component definitions have become
invalid and to “unload” these from memory. Because of the modular nature of components and the
heavy re-use of resource, invalidation of one component typically implies that others, dependant
components have implicitly become invalid as well.

For example, a change in an API defined in some Java component may imply that web applications
have to be restarted.

The abstraction for resources that have dependent resources is the Resource Management system of
Z2.

3.1.1. The Resource Management System

The Resource Management system is at the heart of the Z2 runtime. Essentially anything that binds
runtime memory or represents components is internally modeled as extensions of the Resource class
(see Resource).

Resources represent any kind of abstraction that may be made available for some time and that may
have dependencies onto other abstract resources, such as cache regions, applications, etc. In
particular z2 components are resources.

Resources are provided by Resource Providers that establish a namespace of resources. One of
which is the components resource provider that uses the component factory mechanism to delegate
resource construction further.

A resource can be asked for objects implementing or extending any given Java type using the
IResourceHandle interface. For components, the IComponentsLookup.lookup method is simply a
delegating facade to that.

A complete description of the resource management system is beyond the scope of this section.
Please see the documentation of the com.zfabrik.resources packages in the core API Javadocs.

3.1.2. The z2 Command Line, the Embedded Runtime and the Main Runner

The Z2 environment can be used as a multi-process server environment, which is what we looked at
above, or embedded. The z2 command line that was used already in Starting and synchronizing is
provided by the z.jar library in Z2_HOME/bin. Invoke

11

http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/index.html
http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/resources/IResourceHandle.html
http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/resources/provider/Resource.html

java -jar z.jar -?

to see all options.

One particular way of using z2 that we want to look at in detail in this section is the embedded
mode. Running it embedded simply means to initialize the resource management system and
component system from within another JVM process.

This execution mode can be handy for various purposes:

• You can use it to run “Main” programs (see XYZ) that are defined in some component
repository from the command line w/o worrying about local build environments (and
dependency resolution)

• Sometimes you have no control over the execution mode because your code has been started
by some other infrastructure. This is for example true for Hadoop Map-Reduce jobs. In that
case the Hadoop Map-Reduce implementation starts tasks from a simple JAR file on some
machine. Using the embedded mode we can execute Map-Reduce jobs defined in
component repositories, without complicated job assembly into a hadoop job jar.

To facilitate the embedded mode, the Z2 launcher z.jar must be invoked accordingly.

Pre-requisite to using Z2 in an embedded way is to have a Z2 home installation in file system reach.
That home installation will be used to cache component repository content and binaries – i.e. it is
essential to actually implement Z2.

When you open a console and run

java -cp z.jar com.zfabrik.launch.MainRunner

you will get

z2 MainRunner: Main program execution of z2 components.

SYNOPSIS

java -DcomponentName=<component name> -cp z.jar MainRunner <args>

OPTIONS

 <component name>
 A component name in Z2 identifying a main program component

 <args>
 Parameters passed to the main program

NOTES

Make sure to either set a Z2_HOME environment variable pointing to the
relevant z2 home installation or specify the system property

12

com.zfabrik.home
when calling the MainRunner:

java -DcomponentName=<component name> -Dcom.zfabrik.home=<home folder> -cp
z.jar com.zfabrik.launch.MainRunner <args>

explaining the most direct way of using the embedded mode.

There are several Main programs that come with the z2-base system. For example a tool to retrieve
binaries from Z2: com.zfabrik.dev.util/jarRetriever

Running:

java -DcomponentName=com.zfabrik.dev.util/jarRetriever -cp z.jar
com.zfabrik.launch.MainRunner -out test com.zfabrik.dev.util

Retrieves the binaries of the Java component com.zfabrik.dev.util/java into the folder test. See
also com.zfabrik.dev.util. Note that the environment variable Z2_HOME was assumed to be set.
Otherwise use the system property com.zfabrik.home to specify the home path.

Compatibility note: The z_embedded.jar used for embedded execution in previous z2 versions is
still present and identical to z.jar except for its main-class com.zfabrik.launch.MainRunner.

Another way of embedded execution is programmatically via the ProcessRunner class.

3.2. Components and Component Repositories

Everything you ever touch that the z2 Environment is supposed to understand is organized in
Components. Z2 is built around the concept of named components that are defined in a well-defined
repository structure. The level of understanding of resources that are used to implement some
functionality in z2 is essential so that z2 understands when resources have been modified and
corresponding runtime objects have become invalid and so that z2 is extensible by new semantics,
that is new types of components.

More specifically the term Component translates in z2 to runtime objects that implement semantics
according to a Component Type, have a well-defined, location-derived name, and are declared by a
set of properties and optionally any kind of file type resources – e.g. holding the files of a Web
Application.

Component properties are accessible within z2 via the IComponentsManager interface providing
IComponentDescriptor instances.

Component properties are typically declared via *.properties file resources in stores backing
component repositories such as Git, Subversion, or a file system.

Component properties can be declared in a static, non-computed way but also with some dynamic
handling as descibed in Dynamic Component Properties.

Even more specifically, most existing Component Repositories implement the following folder
structures that define components as shown in the right column:

… Defines component <module>/<local> of type of value of the

13

http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/launch/ProcessRunner.html
http://www.z2-environment.net/javadoc/com.zfabrik.dev.util!2Fjava/impl/index.html

<module>/<local>.properties
...

property com.zfabrik.component.type as set in the property file
<local>.properties.

...
<module>/<sub>/
 z.properties

<file/folder>
<file/folder>
…

...

Defines component <module>/<sub> of type of value of the
property com.zfabrik.component.type as set in the property file
z.properties.

The component has furthermore all resources defined in all files
and folders under <sub>.

These can be accessed using
IComponentsManager.INSTANCE.retrieve(<folder>/<sub>)

The module taxonomy has no little technical meaning to Z2. There is no internal Object
representing a module. Via conventions however the module (as being the path without its last
segment) has a rather prominent function:

• Typically the module matches the development project granularity

• The resolution of Java resources for a component defaults to <module>/java (see Java
components).

• If two component repositories define components of an equally named module, no
component of that module of the repository with the lower priority will be visible.

Component repositories define the reality for the z2 environment. So it is important to understand
this concept to understand z2.

Component repositories are, of course, declared as components itself. Consequently, component
repositories may hold further definitions of component repositories – potentially leading to some
reality distortion (aka Bootstrapping) issues – in the rare case you do advanced repository wiring.

When the z2 Environment starts up it has a hard coded knowledge of the Local Repository that is
stored in Z2_HOME/local (see also above). It is the root of the Z2 component universe from a Z2
Home perspective.

The Local Repository also defines the Base Repository, that we briefly touched on in The Base
Repository and will meet again in Constructing a Z2 system.

The following diagram is an overview over the few entities that really are the heart of Z2 core –
from component repository to resource via synchronization:

14

The notable exception to the repository structure above is Maven component repositories and – to
some extent – the Hub Component Repository. The former derives Java components from Maven
repository artifacts. That is, while the underlying structure is completely different, the repository
implementation presents it in a Z2 compliant way (see Maven component repositories).

The Hub Component Repository turns a Z2 system into a repository for another Z2 system with the
purpose of reducing bandwidth requirements for the original repositories or to not send source code
over the wire (see the Hub Component Repository).

3.2.1. Synchronization with updates

At times, frequently when you are developing and less frequently in production, you want your
runtimes to get up to date with respect to repository contents. That process is called
Synchronization. The ability to synchronize with repositories is a particular capability of the z2-
Environment and responsible for much of its goodness.

The synchronization process happens in three phases: At first, in the pre-invalidation phase, all
component repositories (actually all “synchronizers”, but component repositories are generally
connected to synchronizers. See also ISynchronizer) are asked to check whether there are updates
available and what components (by name) will be affected. In the simplest case, the file system
stored component repository, the check will examine folders to find out whether files have changed
since the last time it was asked to check.

When that phase has completed, all components that have been identified to be subject of updates
will be invalidated. Invalidation is a concept of the Resource Management systerm underlying z2.
Loosely speaking it means that a component is asked to let go of all state but its name. Anything
that is dependent on repository content or other components it depended on is to be dropped.

In the completion phase of the synchronization, synchronizers are asked to make sure that at the end
of the completion phase the runtime has attained operational modes again. That is maybe the most
interesting phase, as actions to that end may greatly vary.

For example, the home synchronizer (com.zfabrik.boot.main/homeSynchronizer) will simply try
to attain the home_up state again.

The worker synchronizer (com.zfabrik.workers/workerSynchronizer) will send all invalidations
to the worker processes and then ask them to attain their target states again.

Note that synchronizers have a priority and are called in a defined order. So that the worker
synchronizer is called before the home synchronizer. As worker processes may have been
invalidated in the second phase, it would be unreasonable to first bring them up again (home
synchronizer) just to tell them about invalidations once more.

3.2.2. File system support

The simplest of all built-in component repositories is the file system component repository. All that
is required is a file system folder holding component declarations and component resources in a
structure as described above. As laid out below, always make sure the repository is started early on
by declaring a participation in the system state com.zfabrik.boot.main/sysrepo_up.

See File system component repositories for more details on the configuration of file system
component repositories.

15

http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/util/sync/ISynchronizer.html

3.2.3. Subversion support

The popular source control management system Subversion (see www.tigris.org) was the first
repository supported by z2 and still shines in many aspects.

In order to add a subversion component repository, declare a component of type com.zfabrik.svncr
as described in Subversion component repositories.

To avoid problematic licenses, the z2 Environment does unfurtunately not come with the complete
built-in Subversion connectivity. Additional configuration steps are required once to complete
subservion enabling on your side, as described in the Subversion How-To.

As noted above, it is important to make sure your repository participates in the system state
com.zfabrik.boot.main/sysrepo_up, i.e. you should add the line

com.zfabrik.systemStates.participation=com.zfabrik.boot.main/sysrepo_up

to the repository declaration. The URL of the repository should point to a repository folder structure
as outlined in Components and Component Repositories. For example, the Base Repository of the
z2@base distribution has the URL:

http://z2-environment.net/svn/z2-environment/trunk/z2-base.base

3.2.4. Git support

The GIT version control system (VCS) is an implementation of a distributed version control system
(DVCS). As opposed to centralized VCS, such as Subversion below, in a DVCS users hold a copy
(called a clone) of the repository content on their local environment, typically the local disk, and
can execute all typical modification operations, such as adding files, committing changes, to the
Local Repository before sending updates back to a remote repository or retrieving updates from a
remote repository.

Currently all framework development for Z2 happens in Git. All results are however available from
Subversion repositories as well.

From a Z2 perspective a DVCS has the advantage of giving a slightly easier way of getting your
own local repository that is fully under your control. Also moving changes between systems has a
built-in solution this way. On the downside, you pay by distributing complete copies of your
system's repository which may turn into a problem once repositories get significantly bigger than
what is actually needed for the given scenario. That's why there is an implied tendency for more and
smaller repositories when using Git und fewer but larger repositories when using Subversion.

In order to add a Git component repository, declare a component of type com.zfabrik.gitcr as
described in GIT component repositories .

As noted before, it is important to make sure your repository participates in the system state
com.zfabrik.boot.main/sysrepo_up, i.e. you should add the line

com.zfabrik.systemStates.participation=com.zfabrik.boot.main/sysrepo_up

16

https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_Subversion
http://www.tigris.org/

to the repository declaration.

3.2.5. Maven Repository Support

Maven repositories such as Maven Central are a huge source of open-source libraries made
available directly by the copyright holder. Maven repositories can be integrated into a Z2 system as
component repositories. In fact, most of the samples accessible from the Z2 Wiki as well as
prominent add-ons such as the Hibernate and Spring add-on make use of this approach.

The main idea is that based on some root artifacts and some maven remote repository configuration,
jar artifacts and dependencies will be made available as Java component in Z2 that can be
referenced or included as suits best.

Artefacts in Maven repos have a fully qualified name of the form

<groupId>:<artifactId>:<version>

or

<groupId>:<artifactId>:<packaging>:<version>

By default, a jar artifact <groupId>:<artifactId>:<version> will result into a Java component of
name

<groupId>:<artifactId>/java

As usual with Maven, if resolution root artifacts and dependencies lead to artifacts of the same
packaging, group id, and artifact id but with different versions, a conflict resolution takes place (the
higher version number will be used).

By default, all non-optional compile scope dependencies will be resolved. The resulting Java
component will have the target artifact as API library and all non-optional compile scope
dependencies as public references in their mapped form.

The z2 core will use lazy component class loaders to make sure that use of include libraries has
virtually no runtime penalty.

An example configuration of a component repository from a Maven artifact repository may look
like this:

com.zfabrik.systemStates.participation=com.zfabrik.boot.main/sysrepo_up
com.zfabrik.component.type=com.zfabrik.mvncr

mvncr.repository=mavenDefault
mvncr.priority=200
mvncr.roots=\
 org.springframework:spring-context:4.0.2.RELEASE,\

17

http://search.maven.org/

 org.springframework:spring-aspects:4.0.2.RELEASE,\
 org.springframework:spring-tx:4.0.2.RELEASE,\
 org.springframework:spring-orm:4.0.2.RELEASE,\
 org.springframework:spring-web:4.0.2.RELEASE,\
 org.springframework.security:spring-security-core:3.2.2.RELEASE,\
 org.springframework.security:spring-security-web:3.2.2.RELEASE,\
 org.springframework.security:spring-security-config:3.2.2.RELEASE,\
 org.springframework.security:spring-security-aspects:3.2.2.RELEASE,\
 org.hibernate:hibernate-entitymanager:4.3.4.Final,\
 aopalliance:aopalliance:1.0,\
 org.aspectj:aspectjweaver:1.7.4,\
 org.aspectj:aspectjtools:1.6.9,\

mvncr.excluded=\
 org.jboss.spec.javax.transaction:jboss-transaction-api_1.2_spec

mvncr.managed=\
 commons-logging:commons-logging:1.1.2

This configuration would imply that the listed roots and all non-optional compile time references
would be added as Java components with mapped references as described above. As an exception
however, the artifact org.jboss.spec.javax.transaction:jboss-transaction-api_1.2_spec would be
excluded. Furthermore, the artifact commons-logging:commons-logging would exclusively be
used in version 1.1.2. Note: Those modifications of the dependency graph resolution correspond to
similar Maven configurations (notably as in <exclusions> and <dependencyManagement>).

See Maven component repositories in the component reference for more details on configuration
properties of Maven component repositories.

At times, it is useful to not have all required dependency roots in one component declaration but
rather allow some modularization-friendly spread out declaration of dependency roots within a
system.

This is achieved by using Fragments of a Maven component repository.

A fragments adds to the dependency graph but does not define where dependencies are retrieved
from, so that the requirement for artifacts can be expressed without wiring the actual system to a
specific environment. This is how the standard add-ons express their requirements.

Note that having two sets of roots combined and resolved is not equivalent to having to independent
Maven Component Repository declaration as version conflict resolution (to the higher version) will
always happen within the scope of one Maven component repository. In fact, in most cases having
one Maven Component Repository will be the only manageable approach.

In order to add a fragment to a Maven Component Repository declare a component of type
com.zfabrik.mvncr.fragment.

See Maven component repository fragments in the component reference for more details on
configuration properties for fragments.

When running in Development mode, the repository will also provide the source (classifier) artifact
if available, so that the Eclipsoid plugins will provide source code attachments to the development
environment whenever possible during classpath resolution.

18

Z2's implementation is based on Eclipse-Aether.

As this subject is not completely trivial it is strongly recommended to check out the samples and
explanations on the Wiki. Start with the Maven Component Repository How-to.

As noted before, it is important to make sure your repository participates in the system state
com.zfabrik.boot.main/sysrepo_up, i.e. you should add the line

com.zfabrik.systemStates.participation=com.zfabrik.boot.main/sysrepo_up

to the repository declaration.

3.2.6. Component Types and Component Factories

Every component in Z2 has a type, declared via the component property
com.zfabrik.component.type. As indicated above the component type identifies the semantics of a
component, i.e. how to treat it and what you can do with it. For example a web application is of type
com.zfabrik.ee.webapp. Being of that type implies an expected folder structure for the resources
that belong to the web application. Also it implies the ability to be made available via a web server.
The semantics of a Java component (of type com.zfabrik.java) is obviously completely different.

Component Factories are in charge of implementing the semantics of a component type. In short a
whenever a component is requested via the resource management system, the component factory
responsible for the respective component type is asked to create an implementation, more
specifically a Resource (see The Resource Management System) that implements the actual
component.

So, for example, the component factory for web applications knows how to interpret the folder
structure of a web application component as the layout of a Java EE web application and how to
register this web application with the Jetty web container. The component factory for Java
components knows how to check whether code needs to be compiled and how and how to set up
class loaders.

3.2.7. Dynamic Component Properties

Component properties can be specified to be dynamically evaluated at runtime. I.e. instead of
assigning a static string value, input is specified that is processed by custom code before assigned as
value to the property.

The most obvious use-case for this feature is to support property values that are derived from
system properties, process environment variables, or properties of some other component. Built-in
support for these use-cases is provided by the JEXL3 processor based on the Apache JEXL library
(http://commons.apache.org/proper/commons-jexl/) version 3. See also #jexl3support for details.

In order to have property values evaluated in a non-static way, the property is extended by a
processor type identifier:

<property name>:<processor type>=<expression>

with a default processor type “plain”.

For example, a propery file,

19

http://commons.apache.org/proper/commons-jexl/
https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_Access_a_Maven_Repository
https://eclipse.org/aether/

svncr.uri\:plain=http://myserver/svn/myrepo

is equivalent to

svncr.uri=http://myserver/svn/myrepo

(note that the colon “:” character needs to be escaped with a leading backslash “\” in property file
syntax so that it is not taken for a separator of name and value).

However,

svncr.uri\:JEXL3=env.SVN_REPO+”/myrepo”

will evaluate the environment variable SVN_REPO and append a string “/myrepo” (see also
#jexl3support).

Due to a number of reasons, the use of dynamic property evaluation is subject to various
constraints:

• As a principle, when using the IComponentDescriptor API, getProperties() returns processed
properties while the method getRawProperties() returns the unprocessed component
properties in its original verbatim form.

• Processing of properties happens after retrieving properties from the original or intermediate
storage, and in particular evaluation results will not be kept between component loading.
That is, at latest after a restart and also after an invalidation due to a synchronization,
component expressions will be evaluated again. However, after loading and as long as held
onto during runtime nor repeated evaluation will be performed.

• The IComponentsManager findComponents(...) API is using raw component properties to
find components based on search conditions. That is, a dynamic expression cannot be used
to alter search results for extension points or component type implementations.

• When making use of dynamic properties early in the z2 loading life cycle, in particular in
conjunction with component repository definitions and custom component descriptor
processor implementations, particular care needs to be paid to the availability of the
processor at time of evaluation of component repository declaration.

3.2.8. Using Dynamic Property Expressions with JEXL3

A component descriptor processor with processing type “JEXL3” comes built-in with z2 starting
version 2.5. This processor is based on the Apache Commons JEXL library version 3.0 (see
https://commons.apache.org/proper/commons-jexl). All values of properties tagged as of JEXL3
processing style in the original component descriptor source will be considered JEXL expressions.

 If evaluating to a non-null value, the expression evaluation result will be set as resulting property
value of the same property name. If the expression evaluates to null, the corresponding property
will not be set in the overall evaluation result.

20

https://commons.apache.org/proper/commons-jexl

The following implicit variables are made available by this processor:

Variable name Definition Example

system System.getProperties() `user dir is ${system["user.dir"]}`

env System.getenv() "JAVA_HOME is ${env.JAVA_HOME}"

this

The actual property set in its evaluated
form. This may be used to resolve
properties that are again computed by
some processor. Note that a max
evaluation depth of 50 is enforced when
resolving properties defined in the
property set

this[“com.zfabrik.component.type”]

components IComponentsManager.INSTANCE

components.getComponent("mymodule/
mycomponent").getProperty("myProp")

Using the this variable, re-use of definitions within a single descriptor is possible. For example,
assuming even the involvement of some other processor ext, a property set

hostName\:JEXl3=env.hostName
database\:ext=_THE_DB_
ds.prop.url\:JEXl3=`jdbc:derby://${this.hostName}/${this.database}`

would be evaluated resolving across processors and with correct substitution in the JEXL
expression.

Note that a JEXL expression does not necessarily evaluate to a string object. Neither is the input
property value to be processed considered a JEXL string. For example, the expression

 `Hallo this is ${system["user.name"]}`

does indeed evaluate to a string. As does

 "Hallo this is ${system[\"user.name\"]}"

(without processing the ${} expression) and more advanced

system["os.name"].startsWith("Linux")? "We are running on a Linux OS" :
"We are running on something else"

21

but not

500+10

 which is indeed an integer.

See also https://commons.apache.org/proper/commons-jexl/reference/syntax.html for more syntax
information.

3.2.9. Java Naming and Directory Interface (JNDI) support

Components in the z2-Environment may be looked up via JNDI. The functionality is essentially
equivalent to lookups via the IComponentsLookup interface.

When looking up a component, it is typically required to specify the expected return type. When
using JNDI URLs this can be accomplished via a type query parameter. For example, when looking
up a JDBC data source (see Data Source Components) that is declared in a component repository as
the component mymodule/dataSource, the call

IComponentsLookup.INSTANCE.lookup("mymodule/
dataSource",javax.sql.DataSource.class);

is equivalent to

new InitialContext().lookup("components:mymodule/dataSource?
type=javax.sql.DataSource");

and both calls return a (shared) data source instance.

3.2.10. Link Components and Component Linking

At times it can be useful to make an existing component definition available under another module
and component name. This can be achieved using link components.

An important example is the construction environments from base environments as implemented by
the sample applications. By convention the environment module contains actual runtime
configuration for the web server, database datasources, user realms and in particular system states
and worker process configurations. If we want to use different subsets of these configurations, e.g.
because we define different systems based on the same basic distribution, we could copy and adapt
the environment. That may however require to keep copies of complex configuration sets that
would need to be updated once the underlying, shared, implementation changes. To mitigate that
components may be linked similarly to symbolic links in Linux file systems.

In the case of the sample systems, components from the z2-base.base environment_base module
are combined into a custom environment module by linking those required and overwriting those
modified. This saves duplication of the web server and worker configurations for example, while
we keep the home layout configuration.

In order to declare a link component, define a component of type com.zfabrik.link and supply a

22

https://commons.apache.org/proper/commons-jexl/reference/syntax.html

target component using the link.targetComponent property. For example, re-using a web server
configuration from the environment_base module would look like this:

#
link to environment.base for defaulting
#
com.zfabrik.component.type=com.zfabrik.link
link.targetComponent=environment.base/webServer

Link components are built-in with z2’s component handling and operations are delegated to
declared target components:

• Lookup as implementation of an interface or class via e.g. IResourceHandle.as(…) or
IComponentsLookup.lookup(…) in general (see the exception below).

• Component resource access via e.g. IComponentsManager.retrieve(…).

Some operations are not delegated however:

• Lookup as IResourceHandle or IResourceObserver

• Component Descriptor retrieval via IComponentsManager.get()

• Search of components via IComponentsManager.findComponents(…).

This leads to subtle but meaningful and important differences in behavior when working with linked
components vs. working with ordinary components. For example, in the case of a linked
component, a lookup for IComponentDescriptor would result in the descriptor of the target
component, while a call to IComponentsManager.get() for the same component would return the
descriptor of the link component.

A target component may itself be a link component. Where link resolution is implemented, it is
done indefinitely until reaching an ordinary component.

3.3. Unit of Work and transaction management

The z2-Environment does not mandate any specific way of implementing transaction management.

It does however have a concept of a unit of work that is used by parts of its implementation and that
is the underpinning of the simple, but rather useful, built-in Java Transaction API (JTA)
implementation.

A unit of work is a well-defined part of the control flow on one thread of execution that resources
such as database connections can bind to and learn about whether all work should be committed or
rolled back at the end of it. The WorkUnit API that is part of the Z2 core APIs implements this
abstraction.

All threads managed by the z2-Environment wrap their work using this API and when extending the
z2-Environment with custom threading implementations, it is suggested that you wrap the actual
work using the WorkUnit API, so that at least the z2 infrastructure can integrate cleanly and
optimize resource usage.

23

http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/work/WorkUnit.html

The JTA implementation provided in the module com.zfabrik.jta provides a standard
UserTransaction implementation that integrates with the WorkUnit API and thereby provides a
robust transaction management abstraction that greatly simplifies integration with persistence tools
like Hibernate JPA.

It can be looked up using the global JNDI name

components:com.zfabrik.jta/userTransaction

Note that com.zfabrik.jta is not a full-blown transaction manager that supports distributed
transactions and corresponding protocols. It is fine for typical non-distributed transaction situations
however.

In conjunction with the z2 provided database connection pooling (see ZFabrikPoolingDataSource)
it is important to note that, if you choose work unit enlisting, then the WorkUnit abstraction defines
transaction boundaries, so that automatically all database connections are enlisted with the current
unit of work and committed or rolled back under control of the WorkUnit implementation.

In terms of the JTA implementation, this behaves as if there is already a transaction open on the
thread.

The WorkUnit API supports nesting and suspending of units of work. With the JTA implementation
this corresponds to nested and isolated transactions.

Please visit the Wiki page on transaction handling in Z2 to learn more about alternatives and how to
integrate with a full-fletched transaction manager.

4. Constructing a Z2 system

This section describes how Z2 systems are assembled from repositories and how to construct your
own system from what is provided on z2-Environment.net and your own repositories.

From a Z2 Core perspective it all starts with the Local Repository that is part of the core. In there,
we define at least the Base Repository. The Base Repository typically points to some remote Git or
Subversion based repository. Once Z2 has registered that repository, other repository may have
appeared that will be registered as well which may lead to the appearance of yet more repositories
and so on. Hence, in effect, we have a chain or tree of repositories with the Local Repository on its
root as far as repositories contain declarations of repositories.

On the other hand, repositories have a priority (more on that below) that determine what repository
has the right to say what a module contains.

Based on that mechanism you can construct a system definitions that consist of as few as one
repository (if we do not count the core) or many repositories of which some are even shared
between systems.

Before moving forward on that, let's have a look at the add-ons.

4.1. Add-ons

Add-ons add more functionality to Z2. Generally speaking, an add-on is a regular Git or Subversion
repository that holds one or more modules and is incorporated into a z2-Environment defined
system via a component repository declaration (see Components and Component Repositories).

24

In other words, technically there is nothing particular about add-ons. It is the way they are used that
is noteworthy. The idea is that you can pick the add-ons you need and add them on top of z2-base.
Previously Z2 was available in distributions. Now you take z2-base and add what you need on top.

Add-ons provided on z2-environment.net are versioned just like z2-base, so that there is no
complicated version vector. Also add-ons have some documentation in the z2-Environment Wiki
and come with some samples.

5. Developing with the z2-Environment

So far we have learned about the principles behind the z2-Environment and how to configure and
run it. This section is devoted to the development using Z2.

In principle you would not need any tool support. You could simply check out files from your
favorite repository, use some text editor or your favorite integrated development environment to add
projects and files or to modify files as you wish, commit your changes and synchronize the runtime
that would do whatever else is needed.

While that is good news already, there are some simple tools that make your life still easier and give
you a development experience you have probably not experienced before in Java environments.

The whole approach to local development using the z2-Environment is currently based on two
tools:

a) The Development Repository – a component repository implementation that allows you to
selectively and quickly test modifications

b) The Eclipsoid Eclipse plug-in. A plug-in to the popular Eclipse development environment
that resolves project dependencies from a running z2-Environment.

5.1. A note on what JDK to use

Different Z2 versions support or require different Java versions.

Z2 Version Required Java Version Supported Java Version

< 2.4 1.6 1.6, 1.7

2.4, 2.5 1.8 1.8

2.6 9 9,10

2.7 9 9,10,11

2.8 9 9,10,11,12,13

As Z2 compiles Java code, it has to make a decision on what language level to compile for.
Typically however you do not need to worry about this, as by default, Z2 simply sticks to the
version of the Java Development Kit (or Java Runtime Environment) it is currently executed with.

That is, if you run a Java 8 JDK, then Z2 will compile for Java 8.

You can however enforce a language level to compile with using the system property
com.zfabrik.java.level. Valid values are “1.6”,”1.7”, “1.8”, “9”, “10”, “11”,”12”,”13” for the
respective Java version.

25

5.2. Workspace development using the Dev Repository

The Development Repository (or short Dev Repo), works by checking a file system folder for
project sub folders that contain a file called LOCAL and scans for components inside.

It expects to find a component repository structure as detailed in Components and Component
Repositories.

The Dev Repo has a high priority within the chain of component repositories. That means that
whatever it finds, it will typically win against definitions provided from other component
repositories.

By default, the Dev Repo is configured to look for changes in sub folders (three levels deep by
default - but see below) of the folder that contains the core installation. That is the reason behind the
folder structure described in the next section:

When using subversion and checking out the Z2 core into your Eclipse workspace the Dev Repo
will find your projects. When using Git and importing projects from a working tree of a repository
that is next to the Z2 core, the Dev Repo will find your projects as well.

This is how it all ties together: Given the Dev Repo is able to find your project (that means a
module to z2 if accepted), you simply put file called LOCAL into the project's root folder and the
project and all its components will be picked up with preference by the Dev Repo next time you
trigger a synchronization.

That sounded a little complex, but as you will see next, together with the Eclipsoid tool it all rounds
up nicely.

Before going there it is noteworthy that the Development Component Repository has use cases
beyond development. Sometimes it handy to override centrally defined components, for example to
modify web server ports or data source configurations, via the Dev Repo.

By modifying the system property com.zfabrik.dev.local.workspace you can influence where the
Dev Repo scans for armed modules.

Using the system property com.zfabrik.dev.local.depth you can influence how deep the Dev Repo
scans for LOCAL files. Depth is measured in path distance from the roots set via the system
property com.zfabrik.dev.local.workspace. This setting defaults to a value of 3, which means that

folder1/folder2/folder3/LOCAL

would be found, which would then make up for module folder3.

5.2.1. Recommended folder structure

Using Git or Subversion makes no difference in the non-development folder layout of a Z2
installation. In development however there is a small but noticeable difference.

In a Subversion setup, the folder that holds the Z2 core check out is also used as development
workspace. That is, you will have a workspace folder, say workspace and in that workspace the Z2
core checkout as well as other projects, typically corresponding to Z2 modules as far as Z2 is
concerned. E.g.:

26

workspace/z2-base.core
workspace/com.acme.some.project
...

In a Git setup, the development workspace folder is a folder next to the clone of the Z2 core
repository. Assuming you installed into install and the workspace folder is called workspace your
structure would look like this:

install/z2-base.core
install/some.other.repo.clone
install/workspace
...

Note: In both cases, the search path for “armed” project is the same for the Development Repository
(see above).

5.3. The Eclipsoid Plug-in

The Eclipsoid plug-in for the Eclipse development environment comes with the z2-base system and
can be installed from the local update site at

http://localhost:8080/eclipsoid/update/site.xml

Alternatively, you can install it from the z2 environment server at

http://www.z2-environment.net/eclipsoid/update/site.xml

This plug-in provides a number of useful utilities for working with Z2. The most important
functions are:

1. Trigger synchronization of the running z2-Environment from the IDE (Sync)

2. Download of dependencies as .jar files from a running z2-Environment (Resolve)

The Eclipsoid fixes an important problem in development of larger software systems in IDEs like
Eclipse: Larger software systems consist of many different projects that have compilation
dependencies between each other. That is, Java code in one project may not compile without having
access to Java types defined in another project.

IDE's like Eclipse support local compilation of the code you are working on and show compilation
problems early on. To do so however, the project's dependencies need to be resolvable. That is
exactly what the Eclipsoid does: Upon Resolve, any Eclipse Java project that is recognized as a Z2
project will be introspected for Java components (see Java Components), and if found, their
references will be resolved from the server-side and required Java definitions will be downloaded
and provided to the project.

Technically, a Z2 project is any Java project that has the Z2 Class path Container (called
"ZFabrik.Eclipsoid") in its class path (i.e. the “.classpath” file). You do not need to fix that by
yourself though. Either by creating a project as Z2 project or by “Transform into Z2-project” you
can let the plug-in do that for you.

That means: In order to work on a single project, from a possibly large solution, you check out that

27

single project, invoke Resolve, and, from there on, modify and Sync repeatedly to test your
modifications. When you are done you commit your changes and disarm projects again to make
sure the integrated content is effective.

The last step is actually somewhat depending on your setup. If your Z2 is hooked up with remote
Git repositories, you may need to push changes to remote before.

Sync and Resolve can be invoked by pressing Alt+Y or Alt+R respectively or by clicking on the Z2
toolbar buttons.

Finally, the Eclipsoid can arm and disarm projects: Arming a project means to put an empty
LOCAL file into it, and disarming means to remove that file again.

See the previous section for more details on the Dev Repo. Armed projects are shown with a green
halo around the Z decoration in the project view.

5.4. Using the Offline Mode

One principle feature of Z2 is to provide for early integration across a team of developers using a
central repository containing the latest changes – except for those modules you are currently
working on by virtue of the development repository.

At times this can get in the way of productivity though. In particular when you find yourself in a
situation of unreliable network connectivity.

For those cases you can turn Z2 into an offline mode during which component repository
implementations will not attempt to fetch updates from non-local sources.

28

5.4.1. How the offline mode is used.

The offline mode is enabled or disabled by setting the system property com.zfabrik.offline to
"true" or "false" respectively. The default value of this property is "false".

This works regardlessly of how this system property is set in the home process. Worker processes
receive an updated value upon synchronization.

5.4.2. Enabling Offline mode at start time

Using the file <Z2 home>/bin/runtime.properties the offline mode can be enabled at starting time
already. Note however that typically some collected offline content needs to be retrieved before
working with a z2 system makes sense during development.

5.4.3. Toggling Offline Mode during Development

Alternatively the offline mode may be switched on or off using a check box on the Z2 GUI.

5.5. In-container unit testing using Z2 Unit

The z2Unit feature, integrated with z2-base, allows to run in-container tests in Z2 from anywhere
where you can run JUnit tests. To learn more about the JUnit testing framework, please visit
www.junit.org.

In-container tests are ordinary unit tests that run within the server environment. Standard JUnit tests
run in an environment that often has little to do with the tested code's “native” environment, other
than seeing the same types. Anything else, data base connectivity, domain test data, component and
naming abstractions (e. g. JNDI) need to be firstly abstracted out from the tested code and secondly
“mocked”, that is simulated one way or the other.

In small systems and for tests that have little environment dependencies that is well-manageable. In
larger scenarios and for higher-level components this becomes unreasonable and assuring the
correctness of the mocked up environment becomes a testing issue on its own.

The foundation of the z2Unit feature is a JUnit Test Runner implementation that delegates the actual
test execution to a z2 server runtime. That is, although JUnit believes to run a locally defined test
class, the actual test runs on a remote server running the methods and reporting results
corresponding to the structure of the local test implementation (which indeeds matches its server-
side equivalent).

Please visit the How_to_z2Unit Wiki page on z2Unit to learn how to practically use z2Unit.

If you want to automate out-of-container tests and cannot rely on the Eclipsoid to have a suitable
class path, you should use the com.zfabrik.dev.util/jarRetriever tool to retrieve all required
dependencies as described next.

5.6. Retrieving jars from Z2

In most everyday operations you do not need to think about binary build results when using the Z2
environment. Sometimes however, in particular when running or inspecting code outside of Z2 you
it is required to have compiled binaries at hand.

Using the com.zfabrik.dev.util/jarRetriever tool you can request binaries of a set of Java
components including dependencies. This tool is an example of a Main program running using an
embedded Z2 environment. That is, in order to run it you do not need a Z2 server running. You do

29

http://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_z2Unit
http://www.junit.org/

however need a Z2 home installation.

See JarRetriever for more info on the jarRetriever. Also see The z2 Command Line, the Embedded
Runtime and the Main Runner for more info on the embedded mode and the MainRunner.

One particular use case is to retrieve Jars from Z2 within an ANT script, for example to automate
unit testing.

The following snippet is an example on how to retrieve all jars, including dependencies for some
components from Z2:

<!-- fetch all libs →
<java classpath="${z2home}/bin/z.jar"

classname="com.zfabrik.launch.MainRunner" fork="true">
<!-- general config →
<sysproperty key="java.util.logging.config.file"

 value="logging.properties" />
<sysproperty key="com.zfabrik.home" value="${z2home}" />
<sysproperty key="com.zfabrik.mode" value="development" />
<sysproperty key="componentName"

 value="com.zfabrik.dev.util/jarRetriever" />
<!-- output folder →
<arg line="-coreapi true -out ${output}" />
<!-- project to retrieve binaries from →
<arg line="${components}" />

</java>

In this example the following properties are expected:

${output} The folder to store the retrieved jar files

${components} A blank-separated list of components to retrieve
the jars from

${z2home} The installation folder of the Z2 home that is
being used to load the jar files from

6. Managing z2

At times it is crucial to gain insight into a running system, in particular from remote, when
accessing log files or learning about the state of a process requires going through remote logins (if
that is is admissible).

The z2-Environment offers some basic remote management possibilities, via a simple Web interface
and via Java Management Extension (JMX) exposed data and operations. For the latter, z2 comes
with a simple command line interface to invoke synchronization and to access system logs.

6.1. The Basic Admin Interface

As started by default, the Basic Admin Interface can be reached at the context path /adm. That is,
when running remotely, it should be accessible at http://localhost:8080/adm.

30

http://www.z2-environment.net/javadoc/com.zfabrik.dev.util!2Fjava/impl/com/zfabrik/impl/dev/JarRetriever.html

The browser will ask for authentication – by default configuration the username “z*” with password
“z” has permission to use the interface. Please see Securing z2 for Production Use on how to
configure security aspects for z2.

The main page provides an information overview on the Java Virtual Machine Process and allows
to switch between worker processes and different data sets as well as triggering some basic
operations:

In particular this provides access to log content as currently written and for some time (as far as
buffered by the home process) of the past:

31

Other functions include:

• Checking on status of worker processes and triggering state changes

• Checking on Loggers and configuring log levels (transiently)

• Inspecting System Properties of the current process

• Checking on Web Apps currently running and basic data such as session count and
processed requests

6.2. The JMX Remoting Command Line Interface

Several basic management operations of z2 are exposed via JMX MBeans and can be accessed by
connecting via tools such as jconsole that is provided with the Java SDK.

In order to simplify automation of management tasks, it is however simpler to use a dedicated
command line tool – in particular when it comes to capabilities such as log streaming that requires
some implementation logic beyond simpler attribute queries.

A few such functions are provided via the z2 command line, as built-in capabilities of the z2
launcher z.jar, that we have implicitly already see in Starting and synchronizing. These functions
are not implemented as embedded main programs and no repository access is required.

Assuming you are in Z2_HOME/bin, running

java -cp z.jar com.zfabrik.launch.Manage -?

will show you options of the Manage command.

SYNOPSIS

java -cp z.jar Manage <command> <options>

32

COMMANDS

 sync The sync performs a synchronization of a running (remote)
z2 Home.

 showlog Continuously stream the z2 Home log of a running z2 Home to
the current stderr.

OPTIONS

 -url <url>
 JMX URL identifying the target z2 Home. Defaults to
service:jmx:rmi:///jndi/rmi://localhost:7777/jmxrmi
 The URL may be shortened to <host>:<port> (e.g. localhost:7777)

 -user <username>

 Username used for JMX authentication. Optional.

 -pass <password>

 Password used for JMX authentication. Optional. Mandatory when a
username has been set

 -b <n>

 Number of lines to read before current (if available) when running
showlog.

EXAMPLE

 java -cp z.jar com.zfabrik.launch.Manage showlog -url host:7777 -user
admin -pass admin

Be aware however that connecting to JMX involves a Java Remote Method Invocation (RMI)
connection which in itself has some non-trivial aspects regarding its use of network infrastructure,
as RMI may switch ports and redirects calls by using server side defined host names (which may or
may not be resolvable from a client). All of these obstacles can be easily overcome – with some
care. Tipps and tricks on this may be found on the Wiki at How to Remote Manage.

7. Enhanced Basis Features

7.1. The Binary Hub Component Repository

In some cases, it is not desired to have the Z2 runtime access source code repositories directly, for
example so that no source code is ever stored on production machines. Other reasons may be to

33

https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_Remote_Manage

remove the load of compilation from production nodes.

The Hub Component repository addresses this problem by providing the following pieces:

• A providing side, that serves all modules and component available to the system in a pre-
compiled form (as far as compilable code is involved)

• A client side that connects to the providing side

So, instead of connecting to an original source of components, the Hub Component Repository
enables an operational approach where some Z2 runtimes see all system content in pre-compiled
form only.

Please read on at How to use the Hub Component Repository.

7.2. The Gateway for Zero-Downtime-Upgrades

The Gateway module implements a "zero-downtime-upgrade" feature in Z2. Specifically, it uses the
worker process management of Z2 in conjunction with an intermediate reverse proxy style Web
handler to implement the following feature:

Upgrading a stateful Web application, i. e. a Web application that stores user data in its HTTP
session typically implies downtime, and if the session state is not serializable and persisted during
the upgrade, it does additionally imply that user state gets lost and typically that users need to log
on again.

Using the Gateway, running sessions may be preserved and worker resources may still be assigned
on the current software revision for as long as there are running sessions during a node upgrade and
until all sessions have been terminated. The typical application of this feature is to roll out
functional and user interface corrections without interrupting users. Users can switch over to post-
upgrade software by terminating their session (e. g. via a log out) and starting a new one (e. g. by
logging in again).

The approach behind the Gateway feature is simple:

1. Allow separation of user sessions across worker processes

2. Provide an entry point to Web Applications that is capable of identifying what worker
process is serving an associated session and of routing to that worker process.

3. Enhance worker process management with the capability of identifying stale worker
processes that will not serve any user request in the future.

Please read on at How to Gateway to learn more about this feature.

8. Component type reference

This section describes the component type available in a z2-base system. Add-ons may provided
additional component types. For those, please visit the Z2 Wiki at

http://redmine.z2-environment.net/projects/z2-environment/wiki.

34

http://redmine.z2-environment.net/projects/z2-environment/wiki
https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_Gateway
https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_use_the_hub_cr

8.1. Core component properties

Components in a Z2 component repository are declared using a set of properties, name-value pairs,
that state the essential characteristics (beyond the name) of a component.

Typically, the component type (also a property, see below) defines the set of properties that make
sense declaring. Some components however look for declarations in other components. As an
example visit the System State component type below.

Very few properties are built-in with the z2 core and apply to any component:

name values

com.zfabrik.component.type The type of the component. The value of this property
determines the Component Factory that implements the
semantics of the component.

com.zfabrik.component.dependencies A comma-separated list of component names.
Components listed should implement
IdependencyComponent, which makes them so-called
dependency components. That interface will be invoked
before providing from the declaring component and the
declaring component will depend on all listed
components.

Component dependencies allow to make sure that other components may be “prepared” before
some particular component becomes used. This can be handy when some functionality of your
solution depends on a side-effect established by another component. For example a web application
may depend on a successful database migration check or another web application.

In order to preprepared a component implementation needs to provide an implementation of
IDependencyComponent to make it a dependency component, as for example Web Apps do.

Note that other component types, such as System States may define properties that apply to yet
other components.

8.2. “Any” components (core)

Any components may represent, as the name tries to indicate any sort of interface or aspect. In
short, implementations of any components simply extend the Resource Management resource base
class Resource (JAVADOC) pointer.

Typically, “any” components are only useful, if you need to satisfy some generic interfaces like
IDependencyComponent but there is no more narrowly defined semantic provided in the form of a
component factory.

That said, unless you have a problem that may demand an “any” component, you do not need to
worry about them.

Properties of an “Any” Component:
name values

com.zfabrik.component.type com.zfabrik.any

component.className Name of the class that implements
com.zfabrik.resources.provider.Resource

35

http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/components/IDependencyComponent.html

8.3. Component Factories (core)

See Components and Component Repositories for details on the concept of component factories.

In general a component factory implementation is an implementation of the interface
com.zfabrik.components.provider.IComponentFactory. When called, it is asked to return an
extension of com.zfabrik.resources.provider.Resource that represents all runtime aspects of the
component of the passed-on name.

As a short cut, the class name given by the property component.className in the component's
descriptor may name a class that extends com.zfabrik.resources.provider.Resource rather than
implementing the factory interface above.

In that case, the extension class must have a constructor that takes a single String parameter and it
will be instantiated for a given component by its name when required (i. e. when otherwise the
factory interface would have been called.

Only one component factory per type name may be declared.

Properties of a Component Factory Component:
name values

com.zfabrik.component.type com.zfabrik.componentFactory

component.className Name of a class that implements
com.zfabrik.components.provider.IComponentFactory or
name of a class that extends
com.zfabrik.resources.provider.Resource. See also above.

componentFactory.type Name of the component type implemented by this factory.
Components that declare to be of this type are managed by
resources provided by this type.

8.4. Data Source components (z2-base)

Data source components allow to manage JDBC data sources as z2 components. When present, the
built-in support for JNDI lookups (see Java Naming and Directory Interface (JNDI) support of the
z2-Environment can be used make these datasources accessible in a standard way for widely used
Java frameworks such as Java persistence providers, or they may be used directly.

The benefits of specifying JDBC data sources as z2 Components lies in the simple maintenance of
their configuration. You are in no way limited to using this component type, when you need a
datasource. At times it may be more suitable to leave your data source configuration for example in
a Spring application context and expose it as a bean to make it re-usable across modules.

Data source configuration is split into two parts: General configuration and Data Source
implementation specific configuration.

General Properties of a Datasource Component:
name values

com.zfabrik.component.type javax.sql.DataSource

ds.type The type of data source used. Supported values are

36

name values

NativeDataSource or ZFabrikPoolingDataSource. See below.

ds.enlist The data source may be enlisted with the WorkUnit. The
WorkUnit API provides a simple way to attach shared resources
on the current thread of execution for the time of a unit of work
(typically a web request, some batch job execution) as implied
by thread usage (see ApplicationThreadPool).
Supported values are none and workUnit. Default value is
workUnit.

ds.dataSourceClass If set, the specified data source class will be loaded as data
source implementation using the private class loader of the Java
module of the component holding the data source definition.
When specifying this class in conjunction with the using
ZFabrikPoolingDataSource as type, configuration properties
will be applied to both and the pool will request new connections
from the specified data source. Alternatively, the pool may be
configured
to use a driver class. See below.

See also DataSourceResource.

8.4.1. Data Source Specific Configuration

When specifying a data sourc class but also when using the built-in pooling data source, properties
of the data source implementation class can be specified as Java Beans properties using the syntax
below:

ds.propType.<prop name> Type of the property. Can be int, string, or boolean. Default
value is string.

ds.prop.<prop name> Value of the data source property to be set according to its type
setting above.

8.4.2. Data Source Types

Currently the Data Source support allows to specify two different types of data sources:

NativeDataSource
When declaring a native data source, the ds.dataSourceClass must be specified to name a data
source implementation class.

All further configuration of the data source is done generically using the property scheme below,

ZFabrikPoolingDataSource
When declaring a ZFabrikPoolingDataSource a z2 provided data base connection pool
implementation will be used that has the following configuration properties:

Name Type Value

driverClass string Name of the actual JDBC Driver implementation class.
E.g. com.mysql.jdbc.Driver for MySQL.

37

http://www.z2-environment.net/javadoc/com.zfabrik.db.data!2Fjava/impl/com/zfabrik/impl/db/data/DataSourceResource.html

url string JDBC connection url

user string User name for authentication at the data base.

password string Password for authentication at the data base.

maxInUseConnections int Maximal number of connections handed out by this pool.
This number may be used to limit database concurrency
for applications. Requesting threads are forced to wait for
freed connections if this limit has been exhausted. Make
sure threads are not synchronized on shared resources
when requesting connections and when this limit is less
than your theoretical application concurrency as this may
lead to thread starvation.

maxSpareConnections int Number of connection held although not currently used
by the applications.

connectionExpiration int Connections will be closed after this number of
milliseconds has expired since creation and when
returned to the pool. This setting can be used to make
sure stale connections get evicted although not detected
otherwise by the pool.

connectionMaxUse int Connections will be closed after this number of times
they have been handed out from the pool and when
returned to the pool. This setting can be used to make
sure connections only serve a limited number of requests.

See also PoolingDataSource.

A typical ZFabrikPoolingDataSource configuration looks like this:

#
MySQL driver configuration
#
ds.dataSourceClass=com.mysql.jdbc.jdbc2.optional.MysqlDataSource
ds.prop.user=z2
ds.prop.password=z2
ds.prop.url=jdbc:mysql://localhost:3306/z2_samples?autoReconnect=true
#
Generic pooling config
#
ds.prop.maxInUseConnections=10
ds.propType.maxInUseConnections=int
ds.prop.maxSpareConnections=5
ds.propType.maxSpareConnections=int
ds.prop.connectionExpiration=60000
ds.propType.connectionExpiration=int

38

http://www.z2-environment.net/javadoc/com.zfabrik.db.data!2Fjava/impl/com/zfabrik/impl/db/data/PoolingDataSource.html

8.5. File system component repositories (core)

File system based repositories are the most straightforward repositories. All that is required is a file
system folder that holds components and component resources in a structure as described in
Components and Component Repositories. As always for component repositories, it is important to
make sure they are started early on in the life-cylce of a z2 runtime.

Note that unlike the development repository (see Developing with the z2-Environment), the file
system repository is not robust under modifications: Resources in the folder structure of the file
system repository will be accessed at any time the z2 runtime requires to – which may be
significantly later than the latest synchronization that decided about invalidations due to changes.
Resources should not be modified in the meantime to assure consistency.

Properties of a File System Component Repository Component:
name values

com.zfabrik.component.type com.zfabrik.fscr

fscr.folder Store folder, i.e. the file system folder that holds the actual
resources of the repository.

fscr.base If the value of fscr.folder is not an absolute file system path but a
relative path instead, this setting specifies what it is evaluated in
relation to.

Allowed values are “home” (default) and “here”.

If set to “home”, the basis of evaluation is the z2 Home folder
(see #FolderStructureOfHome).

If set to “here”, the basis of evaluation is the resource folder of
the declaring component. This is useful, if you want to declare FS
component repositories from FS component repositories in a
relative fashion.

fscr.checkDepth Component folder traversal depth when determining the latest
time stamp. Set to less than zero for infinite depth. Default is -1.

fscr.priority Component repository priority. See IComponentsRepository.
Default is 250.

8.6. GIT component repositories (core)

When using a Git based component repository, the z2 runtime manages a local clone of another Git
repository. This allows to declare Git component repositories that refer to a local Git repository,
typically present in a development setup, or to remote Git repositories, used for production setups.

In both cases, when synchronizing, the component repository will pull updates from the configured
repository and check for modifications by inspecting the local workspace, i.e. the Git workspace
maintained by the z2 environment runtime itself.

Note: When specifying a local repository in gitcr.uri the relevant branch is still the one configured
in the component properties (see below), not the checked out branch of the local repository.

By default, the root of the repository is considered the root of the component repository as well.
That is, modules would be identified as direct sub folder of the Git repository root path.

39

A Git component repository may be configured to use other locations inside the repository instead
using the gitcr.roots configuration property. Instead of checking for modules at the root of the Git
repository, modules will be searched at the given relative paths in the repository. For example, given
gitcr.roots=repo1,other/repo2 the relatives paths repo1 and other/repo2 will be searched.

The order of paths in the comma-separated list determines the priority in overlaying in decreasing
order. That is, using the example above, if a module myModule would be found at
repo1/myModule as well as in other/repo2/myModule, the latter definition would be ignored.

The Git component repository allows flexibility in describing the content version to be considered
by allowing any reference that is meaningful in the source repository. The reference will be used in
a fetch specification so that partial cloning is supported. The reference specified does not need to be
a branch or tag but can be, in particular, HEAD, which can be particularly useful for feature branch
development as that allows simple switching of branches without configuration changes in z2.

See also Git support for more information on Git support.

Properties of a Git Component Repository Component:
name values

com.zfabrik.component.type com.zfabrik.gitcr

gitcr.uri The URI to the Git repository to clone from. This can be an
absolute path, a local path relative to .../bin, or a remote URL.
See the Git documentation for examples.

gitcr.priority The priority of the repository. Defaults to 500.

gitcr.ref A ref to check out as active content. This can be

• a tag (refs/tags/<tag name>),

• a branch (refs/heads/<branch name>

• HEAD for the default branch (i.e. where HEAD points to)

In practice this can be anything used for the JGit check out
command (omitting the branch creation part) which is very
similar to what may be used in the git checkout command
(omitting anything beyond checkout, such as branch creation).

Use this option, if you need more control then given by
gitcr.branch). Note that the latter will be used with preference
and hence needs to be omitted, if you want to use gitcr.ref.

Note: The Git Component Repository uses this reference to fetch
from remote – that is, the reference must be anything that is
meaningful at the source Git repository.

gitcr.branch The branch to checkout. Setting this is equivalent to setting a
gitcr.ref value refs/remotes/origin/<branch name> and will be
considered with preference over gitcr.ref.

gitcr.roots A comma-separated list of repository local paths that serve as
roots of the actual component repository content. The order is in
decreasing priority. See also above. Defaults to the empty path
which identifies the root of the repository.

40

8.7. Java components (core)

Java components are among the very few very essential component types already defined in the Z2
core. The knowledge about Java components is essential to the environment so it can bootstrap.

The Java component implementation takes care of the following tasks:

• Resolving includes for assembly

• Resolving references of Java components for class path computation and class loader
management

• Triggering (re-) compilation of source code in a Java component using the compiler API

The mechanisms around references and includes between Java components and the separation of
Java components into public (api), private (impl), and test, are the underpinnings of the software
modularization features of z2, which is why we discuss these in some depth here.

8.7.1. Classloaders

The class loader concept of the Java platform provides a powerful name spacing mechanism on the
type system. While in the beginning that seems to be of little concern, in more complex scenarios
isolation within the type system in conjunction of sharing of types between modules of a solution
becomes the catalyst of successful modularization.

Isolation means that modules on the platform may use types without sharing them, that is without
making them visible to other modules. That can be important for various reasons:

• Implementation types should be hidden from potential users so that modifications do not
break using modules.(encapsulation).

• In particular third party libraries used in the implementation of a module may conflict with
other versions of similar libraries so that exposing them would lead to unnecessary risks on
the consuming side (multiple versions)

Sharing of types on the other hand allows to refer to the very same types from different modules
and, as they are shared, provides an efficient type safe way of communicating state between
modules:

• By publishing an API, modules may expose services efficiently to other modules

Based on these mechanisms, modularization for Java components on Z2 provides the ability to
maintain a system of named modules that have defined contracts among each other while still
maintaining local integrity and cohesion.

The class loading system in Z2 is based on a ancestry-first, multi-ancestor scheme. Effectively, a
Java component will have two class loaders at runtime. One for the API, one for the Implementation
and both ask their ancestors (other class loaders) first before searching local resources.

The API class loader will have ancestors corresponding to all Java components identified by the
public references. The implementation class loader will have the API class loader as ancestor and
ancestors corresponding to all Java components identified by the private references of the Java
component (see below).

41

8.7.2. Includes

Another important mechanism supported by the Z2 Environment is so called “Java includes”. The
references feature described above allows sharing of types and class path resources without
duplicating them at runtime.

There are cases however where duplication of types is necessary – although that is fortunately the
exception:

• Frameworks like the Spring Framework supply pre-compiled libraries that contain
“adapters” for various other frameworks that may not be present on the using application.
The late linking qualities of the Java VM supports unresolvable type references as long as
they are not needed. In this case, the library must be used in the class loading name space of
the using application to make sure it gets appropriate type visibility.

• Some libraries attach information about the using application to the class loading namespace
itself, e.g. via class variables. In that case, sharing types can easily lead to unpredictable
behavior as state from different class loading name spaces may override each other.

The use of includes, actually in most cases only “private includes” implements exactly that. The
Java resources of the included component get copied into the using Java component and hence are
used as if provided by the using Java component.

The picture below shows a simplified example overview over the reference and the include
mechanisms:

42

Properties of a Java Component:
name values

com.zfabrik.component.type com.zfabrik.java

java.publicReferences Points to another java component whose public types will be
shared with this one (and maybe others). Everything
referenced as public reference will be visible to the public
interface of the referencing component as well as to all
referencing the referencing component. In other words:
References are transitive. In particular, anything required to
compile the public types of a Java component must be
referenced via this reference property. Components may be
specified as a comma-separated list. Component names that
have no "/" will be defaulted by appending "/java".

java.publicIncludes Points to com.zfabrik.files or com.zfabrik.java components
that must have a bin (or alternatively a bin.api, for Java
components) folder that will be included into this java
component's public java resources. The component may also
have a src (or alternatively src.api, for Java components)
folder that will be copied before compilation into src.api.

java.publicClassPathInclusion Custom regular expression for classpath computation of the
public classloader. Only library files matching the specified
pattern will be included into the respective classpath
computation. This has no effect on the inclusion of .class files.
Defaults to “^.*(?<!-sources)\\.jar$” (i.e. including all jar
files except those ending on “-sources” before the file
extension).

java.publicCompile.order Like java.compile.order below, but only applying to the
public resources and considered with preference.

java.privateReferences Points to another java component whose public types will be
shared with this one (and maybe others) Nothing referenced as
private reference will be automatically exposed to the public
interface of the referencing component nor to other
components. Anything needed to compile the private types of
a Java component, must be referenced as a public reference,
be part of the public types of that component, or be
referenced via this reference property. In other words: The
private types automatically see the public types and
transitively anything referenced publicly as described above.
In addition, to use more types in the "private implementation
section" of a Java component, types that will not be exposed
to referencing components, use this reference property.
Components may be specified as a comma-separated list.
Component names that have no "/" will be defaulted by
appending "/java".

43

name values

java.privateIncludes Points to com.zfabrik.files or com.zfabrik.java components
that must have a bin (or alternatively a bin.api, for Java
components) folder that will be included into this java
component's private java resources. The component may also
have a src (or alternatively src.api, for Java components)
folder that will be copied before compilation into src.impl.

java.privateClassPathInclusion Custom regular expression for classpath computation of the
private classloader. Only library files matching the specified
pattern will be included into the respective classpath
computation. This has no effect on the inclusion of .class files.
Defaults to “^.*(?<!-sources)\\.jar$” (i.e. including all jar
files except those ending on “-sources” before the file
extension).

java.privateCompile.order Like java.compile.order below, but only applying to the
private resources and considered with preference.

java.testReferences Points to another java component whose public types will be
shared with this one (and maybe others) if the execution
mode, as defined by the system property (see
Foundation.MODE} is set to development. Test references
extend the private references. In conjunction with the tests
source folder this allows to add test code and corresponding
dependencies that will be ignored by the runtime unless
running in development mode.

java.testIncludes Points to com.zfabrik.files or com.zfabrik.java components
that must have a bin (or alternatively a bin.api, for Java
components) folder that will be included into this java
component's test java resources. The component may also
have a src (or alternatively src.api, for Java components)
folder that will be copied before compilation into src.test.

java.testClassPathInclusion Custom regular expression for classpath computation of the
test classpath. Only library files matching the specified pattern
will be included into the classpath computation. This has no
effect on the inclusion of .class files. Defaults to “^.*(?<!-
sources)\\.jar$” (i.e. including all jar files except those ending
on “-sources” before the file extension).

java.testCompile.order Like java.compile.order below, but only applying to the test
resources and considered with preference.

java.compile.order The compile order must be defined in java components that
also contain non-java sources - e.g. scala. This property can be
omitted for pure java components, otherwise one has to define
all compilers in the right order - e.g: scala, java

44

8.8. JUL configurations (z2-base)

The standard logging implementation contained in the package java.util.logging (or JUL for short)
of the Java SE distribution can be configured using components of type java.util.logging.

The z2 Environment implementation uses JUL throughout (rather than log4j or other logging
mechanisms). Defining java.util.logging components provides an easy way to distribute log
configurations without the need to modify command lines and without need to restart the runtime,

Components of type java.util.logging are expected to provide a file called logging.properties in
their resources (see for example the component environment/logging in z2_base/base). That file
will be applied using LogManager.getLogManager().readConfiguration(...) every time the
component is prepared (as in IDependencyComponent, i.e. as part of a dependency resolution),
e.g. when (re-) attaining a participated system state.

Properties of a JUL Configuration Component:
name values

com.zfabrik.component.type java.util.logging

8.9. Link Components

Link components can be used to re-use existing component declarations and resources by another
module and component name. Details are explained in Link Components and Component Linking.

Link components are declard using the component type com.zfabrik.link.

Properties of a Link Component:
name values

link.targetComponent Name of the target component.

8.10. Log4J configurations (z2-base)

Components of type org.apache.log4j.configuration are handled exactly as components of type
java.util.logging (see right above), except that a file called log4j.properties is expected and loaded
using Log4J's PropertyConfigurator API (see the Log4J documentation for the specifics of Log4J
configuration).

Properties of a Log4J Configuration Component:
name values

com.zfabrik.component.type org.apache.log4j.configuration

8.11. Main Program Components (core)

While the z2-environment has built-in support for long running worker processes it is perfectly
usable to run command line programs via the Main Runner as described in section #embedded.

In order to implement a Main Program component to be called from the command line, the
component implementation is required to either

• support lookup as java.lang.Class returning a class object that has a main method,

• or make use of the component type com.zfabrik.mainProgram and declare an

45

implementation class that has a main method.

Note: A main method, is a method of the signature

public static void main(String[] args)

In the first case, the declared component type is irrelevant, as long as a lookup requirement is
satisfied. For example an “any” component serving as a Main Program could be implemented like
this:

public class MainResource extends Resource {

@Override
public <T> T as(Class<T> clz) {

if (clz.equals(Class.class)) {
return clz.cast(MainResource.class);

}
return super.as(clz);

}

public static void main(String[] args) {
System.err.println("hello");

}
}

 In the second case, it is not required to implement a typed lookup implementation via the as(..)
method. Instead a class with a main method suffices.

Example:

Component declaration:

com.zfabrik.component.type=com.zfabrik.mainProgram
component.className=test.Main

Main class implementation:

public class Main {
public static void main(String[] args) {

System.err.println("Hello Main");
}

}

Assuming the component is declares as mymodule/main, the environment variable Z2_HOME is
set, the command line

46

java -DcomponentName=mymodule/main -cp z.jar com.zfabrik.launch.MainRunner

will invoke the main program (note: for experimentation you might want to work with a locally
defined development state using the dev repo. In that case set the system property
com.zfabrik.dev.local.workspace on the command line accordingly - e.g. to the folder above your
development modules - see also #devRepo).

All shared component properties, such as those declaring dependencies, are supported. A main
program runs in exactly the same context as any other component defined. This make Main
Program components an extremely useful command line interface of a potentially application
system.

Properties of a Main Program Component:
name values

com.zfabrik.component.type com.zfabrik.mainProgram

component.className Name of class that has a main method.

8.12. Maven component repositories (z2-base)

Maven component repositories allow to integrate artifacts from Maven artifact repositories without
copying them into your system. See Maven Repository Support for more details.

Properties of a Maven Component Repository Component:
name values

com.zfabrik.component.type com.zfabrik.mvncr

mvncr.settings Specifies the location of the settings XML file relative to the
components resources. This is expected to be a standard Maven
configuration file. Defaults to settings.xml

mvncr.roots A comman-separated list of root artifacts

mvncr.managed Fixed artifact versions, if encountered during recursive root
resolution. This corresponds to a <dependencyManagement>
section in a Maven POM file.

mvncr.excluded A comma separated list of artifacts that will be skipped during
resolution of any root

mvncr.priority Component repository priority. See IComponentsRepository.
Default is 500.

mvncr.repository Symbolic name of the repository. Use this to define a component
name independent identifier for the repository that fragments (see
below) can reference.

47

In order to deviate from the default resolution and mapping, maven repository roots may be
specified with a query string syntax like this:

org.springframework.security:spring-security-aspects:3.2.2.RELEASE?
versioned=true&scope=RUNTIME&excluded=commons-logging:commons-
logging:1.1.2

Admissable query parameters are

param meaning

com.zfabrik.component.type com.zfabrik.mvncr

versioned If set to true, the version part will not be removed from the java
component name mapping and instead a versioned name is used.
That is, in the case above, a java component
org.springframework.security:spring-security-
aspects:3.2.2.RELEASE/java would be mapped. This is useful
if "non-default" versions are required.

scope Any of RUNTIME, COMPILE, PROVIDED, SYSTEM, TEST.
Corresponds to the corresponding Maven dependency scopes. If
set, non-optional dependencies of the respective scope will be
traversed to resolve dependencies.

excluded Exclusions on the dependency graph.

8.13. Maven component repository fragments (z2-base)

A Maven component repository fragment allows to add dependency graph information to a Maven
component repository (see above).

Properties of a Maven Component Repository Fragment Component:
name values

com.zfabrik.component.type com.zfabrik.mvncr.fragment

mvncr.component The component name (or a comma-separated list of component
names) of Maven component repository or Maven component
repository fragment declarations this fragment adds to.
DEPRECATED, use mvncr.repository instead.

mvncr.repository The maven repository name (or a comma-separated list of
repository names) of Maven component repository or Maven
component repository fragment declarations this fragment adds
to.

mvncr.roots As above. Will be merged with the repo this fragment adds to.

mvncr.managed As above. Will be merged with the repo this fragment adds to.

mvncr.excluded As above. Will be merged with the repo this fragment adds to.

48

8.14. Subversion component repositories (core)

Subversion component repositories provide an easy and robust way to run z2 in a highly controlled
and versioned yet scalable way.

See Components and Component Repositories for details on Subversion support.

Properties of a Subversion Component Repository Component:
name values

com.zfabrik.component.type com.zfabrik.svncr

svncr.url URL of the subversion root folder of the repository. E.g.
something like svn://z2-environment.net/z2_base/trunk/base

svncr.user User name for Subversion authentication (optional).

svncr.password Password for Subversion authentication (optional)

svncr.priority Component repository priority. See IComponentsRepository.
Default is 500.

By default, a Subversion component repository needs to be able to connect to the Subversion
repository. In most cases this means that you need to be online when running a z2 environment,
even when developing.

In reality however, the repository has all required resources in its local caches and only checks for
updates. In development situations it can be very handy to have the repository simply go by what is
on the caches and continue developing in an Eclipse workspace gladly ignoring possible central
modifications.

To enable that you can set the system property

-Dcom.zfabrik.repo.mode=relaxed

in launch.properties (see also #systemProps). In that case, failing to connect to a remote repository
will be noted by a warning but otherwise ignored and the repository will try to satisfy component
lookups from cached data.

To avoid problematic licenses, the z2 Environment does unfurtunately not come with complete
built-in Subversion connectivity. Additional configuration steps are required once to complete
subservion enabling on your side, as described in the Subversion How-To.

8.15. System States (core)

System states are abstract target configurations for z2 processes. Systems can easily develop into a
non-trivial set of web applications, batch jobs, web service interfaces and more that interplay with
each other to implement solution scenarios. Take for example an e-commerce web site: There is the
actual shop front-end but also report generation, mass-emailing, shop content administration, etc.

It is handy to group components that form parts of an overall scenario and that need to be initialized
beforehand, such as web applications, or update scheduling for analytical data aggregation.

49

https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_Subversion

System states support dependency declarations in two directions:

• Via the property com.zfabrik.systemStates.dependencies a comma-separated list of
components that this state depends on and that must be prepared to have the state attained.

• Via the property com.zfabrik.systemStates.participation a comma-separated list of other
system state components may be specified that are to depend on this system state and that
cannot be attained unless this system state has been prepared (which equals attained in this
case). This property may be declared on components of any type.

State dependencies are evaluated in an eager way. That is, even if some dependency fails to prepare,
and eventually the system state will not be attain, all other dependencies will still try to be prepared.

System state dependencies are similar to component dependencies (see Core component properties).
There are subtle differences however in that component dependencies are evaluated much earlier in
the life cycle of a component than state dependencies. In essence that means, that the system state
implementation may never evaluate participations if its component dependencies fail.

Also, any preparation of a system state, for example during the verification step of a
synchronization, will trigger a preparation of all dependent dependency components (unlike a
component dependency, that will only be prepared again, if invalidated).

Hence, on system states, it is preferable to not use component dependencies but rather the
declarations above.

In practice, system states serve as a convenient, named place holder for parts of an overall scenario.

Attaining a system state means to “prepare” (see IDependencyComponent) all dependent
component and do so again if one got invalidated and the system is to be attained again.

The system state feature is used by z2 in several places:

• All z2 processes (in server mode) have the target state com.zfabrik.boot.main/process_up

• The home process has a hard-coded target state com.zfabrik.boot.main/home_up

• Worker processes always have the target state com.zfabrik.boot.main/worker_up

• Component repositories should participate in com.zfabrik.boot.main/sysrepo_up

• Worker processes express their target configuration by a list of system states to attain (and
keep attained). See below for worker process component configuration.

As mentioned above, in order to assign components as part of a system state, you can either list
them as dependency components in the system state definition like this:

com.zfabrik.systemStates.dependencies=\
mymodule1/comp1,\
mymodule2/comp2

Or, in the case of other system states, mark them as participants of the system state. For example to
your component's properties you could add

com.zfabrik.systemStates.participation=com.zfabrik.boot.main/worker_up

50

http://www.z2-environment.net/javadoc/com.zfabrik.core.api!2Fjava/api/com/zfabrik/components/IDependencyComponent.html

By convention, the most essential system states used and participated in for application components
are declared in the “environment” module. We suggest to use:

• environment/webWorkerUp for web interfaces

• environment/jobWorkerUp for asynchronous data processing.

Larger scenarios may need more fine-grained scenario partitioning.

Declaring a system state requires no more that declaring a component of the corresponing type.

Properties of a System State Component:
name values

com.zfabrik.component.type com.zfabrik.systemState

com.zfabrik.systemStates.dependencies A comma-separated list of components that this state
depends on and that must be prepared to have the state
attained.

The following diagram shows typical system state relationships in a worker process:

8.16. Web applications (z2-base)

Web application configuration is split into three parts:

1. The Java EE standard Web application deployment descriptor found at WEB-INF/web.xml

51

the Web application's Web resources.

2. Container-specific extended Web application configuration. In the case of Jetty (currently
the default Web container in z2) please check out the documentation on Jetty's
WEB-INF/jetty-web.xml configuration file.

3. The z2 component descriptor that covers the remaining parts (such as the Web app's context
path) and life cycle control inherent to z2.

Web applications have the following module structure in z2:

WebContent Folder holding the standard Java Web
application structure, such as the WEB-INF
folder.

z.properties Component descriptor of the Web application

Properties of a Web Application Component:
name values

com.zfabrik.component.type com.zfabrik.ee.webapp

webapp.path Context path of the web application.

webapp.server Component name of the web server to host this Web application.

webapp.requiredPaths A comma-separated list of context paths this Web application
relies on. This is an alternative way of defining a component
dependency by Web app context path rather than by component
name.

webapp.ContainerIncludeJar
Pattern

The jars that qualify for meta-data parsing can be limited in Jetty.
In z2 the default is defined by the regular expression "(?!.+-
sources\\.).*\\.jar$" (as Java string) which is all Jars except the
source code jars (by convention). See also the Jetty
Documentation.

8.17. Web servers (z2-base)

In order to run Web Applications, arguably the most prominent reason to run an application server,
z2 integrates the Jetty Web Container.

There is no particular reason other than that Jetty is a well-embeddable, well performing, standard
compliant web container. Based on z2's extensible component model, the way Jetty has been
integrated, Tomcat could be integrated as well. Contact us, if that is important for you.

The component type com.zfabrik.ee.webcontainer.jetty configures instances of Jetty web servers.
While in most cases you will not operate more than one, the component still provides the place to
hold Jetty configuration. As an example have a look at the environment/webServer component in
z2_base/base.

52

http://www.eclipse.org/jetty/documentation/9.1.1.v20140108/configuring-webapps.html#container-include-jar-pattern
http://www.eclipse.org/jetty/documentation/9.1.1.v20140108/configuring-webapps.html#container-include-jar-pattern

Properties of a Web Server Component:
name values

com.zfabrik.component.type com.zfabrik.ee.webcontainer.jetty

jetty.config Names a Jetty configuration file (typically called jetty.xml)
relative to the component's resource folder

jetty.override-web.xml Names a override web.xml file, that can be used to override web
application configurations for all web applications. The file name
is considered relative to the component's resource folder

jetty.default-web.xml Names a default web.xml file, that defines web application
defaults for all web applications. The file name is considered
relative to the component's resource folder

8.18. Worker Processes (z2-base)

Worker processes are managed by the home process when running in server mode. Worker
processes improve robustness of the z2 runtime as applications running in some worker process do
not impact applications running in another worker process nor and in particular, do crashing worker
processes impact the home process.

See Installing and Understanding a Z2 Home for more information on how a z2 home works.

Properties of a Worker Processes Component:
name values

com.zfabrik.component.type com.zfabrik.worker

worker.process.vmOptions General virtual machine parameters for the worker
process. See the JVM documentation for details. See
below for consideration on command line syntax.

worker.process.vmOptions.<os name> Override of the general VM options above for a
specific operating system. Use the OS name returned
by the RuntimeMXBean to replace <os name> with.
See below for consideration on command line syntax.

worker.states Comma-separated list of target state (components) of
the worker process (see also ISystemState). The
worker process, when starting, will try to attain these
target states and will try so again during each
verification and synchronization.

worker.concurrency Size of application thread pool (see
ApplicationThreadPool). In general this thread pool
is used for application type work (e.g. for web requests
or parallel execution within the application). This
property helps achieving a simple but effective
concurrent load control

worker.process.timeouts.start Timeout in milliseconds. This time out determines
when the worker process implementation will forcibly

53

kill the worker process if it has not reported startup
completion until then.

worker.process.timeouts.termination Timeout in milliseconds. This time out determines
when the worker process implementation will forcibly
kill the worker process if it has not terminated after
this timeout has passed since it was asked to terminate.

worker.process.timeouts.communicatio
n

Timeout in milliseconds. This time out is the default
timeout that determines the time passed after which the
worker process implementation will forcibly kill a
worker process if a message request has not returned.

worker.debug Debugging for the worker process will be configured if
this property is set to true and the home process has
debugging enabled. Otherwise the worker process will
not be configured for debugging.

worker.debug.port The debug port to use for this worker process, if it is
configured for debugging.

worker.inheritedSystemProperties Some system properties set on the z2 home process via
the command line (or launch.properties) are useful to
be propagated to worker processes. This property can
be used to specify a comma-separated list of such
properties. See below for more details.

8.18.1. System Property Propagation from Home to Worker Process

Some system properties set on the z2 home process via the command line (or launch.properties) are
useful to be propagated to worker processes. The property worker.inheritedSystemProperties can
be used on worker process declaration to specify a comma-separated list of such properties. See
below for more details.

Note that all properties set in runtime.properties (see #offlineMode) will be set on all z2 processes
regardless. If however properties may be set depending on some starting command line, it can be
useful to have them propagated as is.

By default, the following system properties will be propagated via the command line from the home
process to the worker process by default:

Property Meaning

com.sun.management.config.file JMX config file. Preferrably preserve.

com.zfabrik.config Name of config file. Defaults to runtime.properties. See
#systemProps.

java.util.logging.config.file Default Java logging configuration.

54

com.zfabrik.dev.local.workspace Setting of the development repository defining where to
check for “armed” modules. See also #systemProps and in
particular #devRepo.

com.zfabrik.dev.local.repo (outdated)

com.zfabrik.repo.mode General repository access mode. If set to “relaxed”,
repositories will attempt to work on previously cached
resources in case of technical repository access failures
during synchronization. If set to “strict” (which is the
default), technical failures will lead to a failure in
synchronization, even if local resources are available. This
feature is useful for offline or bad connectivity situations.

java.library.path See Java documentation.

com.zfabrik.mode For development mode. See #systemProps

com.zfabrik.proxy.auth
https.proxyPort
https.proxyHost
http.proxyPort
http.proxyHost
proxyPort
proxyHost
proxyUser
proxyPassword

Proxy configuration. See https://redmine.z2-
environment.net/projects/z2-environment/wiki/How_to_prox
y_settings.

That is, the default value of worker.inheritedSystemProperties is:

worker.inheritedSystemProperties=com.sun.management.config.file,\
 com.zfabrik.config,\
 java.util.logging.config.file,\
 com.zfabrik.dev.local.workspace,\
 com.zfabrik.dev.local.repo,\
 com.zfabrik.repo.mode,\
 com.zfabrik.proxy.auth,\
 java.library.path,\
 com.zfabrik.mode,\
 https.proxyPort,\
 https.proxyHost,\
 http.proxyPort,\
 http.proxyHost,\
 proxyPort,\
 proxyHost,\
 proxyUser,\
 proxyPassword

55

https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_proxy_settings
https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_proxy_settings
https://redmine.z2-environment.net/projects/z2-environment/wiki/How_to_proxy_settings

8.18.2. Special considerations when specifying VM options using blanks and quotes

Virtual machine options specified using the component property worker.process.vmOptions or its
OS specific variant will be parsed by Z2 and conveyed as command line arguments to the child
process. In general, the specified command line will be broken up at blank characters (multiple in a
sequence counting as one).

Special considerations apply when there is a need to define virtual machine options containing
blanks or double quotes: Any text enclosed in double quotes will be treated as one “token” when
breaking up command line options. That is, in order to supply an option that contains blanks, put it
in double quotes.

For example

worker.process.vmOptions=-Dprop1=A -Dprop2=it works

will lead to system properties prop1=”A” and prop2=”it” and some probably problematic option
“works”. In order to achieve the desired prop2=”it works”, use

worker.process.vmOptions=-Dprop1=A “-Dprop2=it works”

Finally, if you need to convey double quotes in VM options, use the backslash (“\”) escape to
escape quotes. The latter works in quoted text only.

For example

worker.process.vmOptions=-Dprop1=A “-Dprop2=it \”works\””

will lead to prop2='it “works”' (using ' as string delimiter for clarity). Or, more extremely

worker.process.vmOptions=-Dprop1=A “-Dprop2=\””

will result in prop2='”'.

9. Securing z2 for Production Use

By default the z2-base.base distribution is configured to load a number of Web Applications and
has, depending on how it is started, accessible debug ports (5000, 5100+x, 5200+x) as well as JMX
ports.

This section provides an overview on where and how to configure these settings.

It is however strongly recommended to not make an application server environment such as the z2-
Environment directly accessible from any non-secured environment.

It is instead recommended to secure a production installation by providing access to dedicated ports
only and, in the case of Web applications, to dedicated context paths only.

56

In a single node setup, a Web Server such as the Apache Web Server configured to serve as reverse
proxy and a firewall setup preventing access to anything but default Web Application and
management access ports (e.g. via SSH) could be sufficient.

NOTE #1: When using in production, you should make sure the /adm path is not made accessible
by any intermediate Web infastructure.

57

	1. Introduction
	1.1. What is the z2-Environment
	1.2. Online resources

	2. Installing and Understanding a Z2 Home
	2.1. The z2-base Distribution
	2.2. Home install in 2 minutes
	2.3. Folder Structure of a Z2 Home
	2.4. Starting and synchronizing
	2.5. Important System Properties
	2.6. The Base Repository
	2.7. Worker Processes and Home Layouts

	3. Anatomy
	3.1. Working on-demand
	3.1.1. The Resource Management System
	3.1.2. The z2 Command Line, the Embedded Runtime and the Main Runner

	3.2. Components and Component Repositories
	3.2.1. Synchronization with updates
	3.2.2. File system support
	3.2.3. Subversion support
	3.2.4. Git support
	3.2.5. Maven Repository Support
	3.2.6. Component Types and Component Factories
	3.2.7. Dynamic Component Properties
	3.2.8. Using Dynamic Property Expressions with JEXL3
	3.2.9. Java Naming and Directory Interface (JNDI) support
	3.2.10. Link Components and Component Linking

	3.3. Unit of Work and transaction management

	4. Constructing a Z2 system
	4.1. Add-ons

	5. Developing with the z2-Environment
	5.1. A note on what JDK to use
	5.2. Workspace development using the Dev Repository
	5.2.1. Recommended folder structure

	5.3. The Eclipsoid Plug-in
	5.4. Using the Offline Mode
	5.4.1. How the offline mode is used.
	5.4.2. Enabling Offline mode at start time
	5.4.3. Toggling Offline Mode during Development

	5.5. In-container unit testing using Z2 Unit
	5.6. Retrieving jars from Z2

	6. Managing z2
	6.1. The Basic Admin Interface
	6.2. The JMX Remoting Command Line Interface

	7. Enhanced Basis Features
	7.1. The Binary Hub Component Repository
	7.2. The Gateway for Zero-Downtime-Upgrades

	8. Component type reference
	8.1. Core component properties
	8.2. “Any” components (core)
	Properties of an “Any” Component:

	8.3. Component Factories (core)
	Properties of a Component Factory Component:

	8.4. Data Source components (z2-base)
	General Properties of a Datasource Component:
	8.4.1. Data Source Specific Configuration
	8.4.2. Data Source Types
	NativeDataSource
	ZFabrikPoolingDataSource

	8.5. File system component repositories (core)
	Properties of a File System Component Repository Component:

	8.6. GIT component repositories (core)
	Properties of a Git Component Repository Component:

	8.7. Java components (core)
	8.7.1. Classloaders
	8.7.2. Includes
	Properties of a Java Component:

	8.8. JUL configurations (z2-base)
	Properties of a JUL Configuration Component:

	8.9. Link Components
	Properties of a Link Component:

	8.10. Log4J configurations (z2-base)
	Properties of a Log4J Configuration Component:

	8.11. Main Program Components (core)
	Properties of a Main Program Component:

	8.12. Maven component repositories (z2-base)
	Properties of a Maven Component Repository Component:

	8.13. Maven component repository fragments (z2-base)
	Properties of a Maven Component Repository Fragment Component:

	8.14. Subversion component repositories (core)
	Properties of a Subversion Component Repository Component:

	8.15. System States (core)
	Properties of a System State Component:

	8.16. Web applications (z2-base)
	Properties of a Web Application Component:

	8.17. Web servers (z2-base)
	Properties of a Web Server Component:

	8.18. Worker Processes (z2-base)
	Properties of a Worker Processes Component:
	8.18.1. System Property Propagation from Home to Worker Process
	8.18.2. Special considerations when specifying VM options using blanks and quotes

	9. Securing z2 for Production Use

