z2-Environment - Improvement #2059

Enhance standard module layout for better reload performance due to impl updates.
15.03.2020 18:07 - Henning Blohm

Status: New Start date: 15.03.2020
Priority: Normal Due date:

Assignee: Henning Blohm % Done: 0%
Category: z2-core Estimated time: 0.00 hour
Target version: 3.0

origin:

Description

More efficient handling of APl and Impl in Rebuilds (#2059)

Currently, in the dependency map used by the ComponentsBuilder, we analyze the necessity of a rebuild by comparing
build timestamps maintained in a dependency map in dependent components with a latest built timestamp kept in the
build lock file of the dependency component.

If there is a rebuild of an implementation part of a Java component, the build timestamp is updated and so a
rebuild of all dependency components forced - which is unnecessary, unless there was a change in the API as well.

We would like that a rebuild of dependency Java components is not forced, if there is no change of the API of a dependency
component

With the current model
At the level of the dependency component:
e Separate build timestamps for API and implementation as maintained in the build lock file.
At the level of the dependent component:
¢ When checking for rebuild in dependency components only check for matches with the API build timestamp.

e Keep a cache of build results and copy from there, if no deemed necessary - because the sources are not younger than the last
build-timestamp

A new component split
The solution would be altogether completely natural, if api and impl as well as test would be different "Java" components.
We could have a simple layout:

<module>/api
<module>/impl

For compatibility, we could consider

<module>/impl - (private)-> <module>/java/impl
<module>/java —--(public)-> <module>/java/api

So overall we have

iuggAIKKKCAAgoooEAhBQySCjksuTploZyLyZMqKuD8qOjAe9sKKKCAAgooolACCiiQVsAgKalvytaHhRD4n4cCCnxbwPnhUBGAAg
000lACCiiggAIKUBAWSEqAapMKKKCAAgooolACCiiggAIKKKBAVxQwSOgKo+09KaCAAgooolACCiiggAIKKKCAAgkEDJISoNgkAgo
00lACCiiggAIKKKCAAgoo0BUFDJK64gh6Twoool ACCiiggAIKKKCAAgoooEACAYOkBKg2qYACCiiggAIKKKCAAgooolACCNRFAYO

krjig3pMCCiiggAIKKKCAAgooolACCiiQQMAgKQGqTSqggAIKKKCAAgooolACCiiggAJdUcAggqSuOqvekgAIKKKCAAgooolACCiiggAl

KJBD4f9hUOcvfF6jeAAAAAEIFTkSuQmCC

Problems to Expect

04.07.2025 1/3



redmine.z2-environment.net/issues/2059

This approach has a few downsides:

Missing Dependencies

In many places provisioning of implementation instances via API provided lookups has been implemented. So, effectively an API
dependent component holds on to an impl instance without being subject to a dependency that would invalidate the consuming
component, if only the implemtation component is invalidated.

Approach: Upon lookup supply an object or a resource handle representing the dependant. Upon an object, its classloader will be
inspected and the related Java component made a dependant to the providing implementation. Upon a resource handle, the
identified resource will be made a dependant.

Acceptance Criterias

e There is a new component type com.zfabrik.impl
o The impl component is a reduced Java Component that only supports a private loader.
o All sources are found in <component>/src, binaries in <component>/bin/{lib|classes}
o The component type com.zfabrik.impl supports impl.references and impl.includes, etc.

e There is a new component type com.zfabrik.api
o The impl component is a reduced Java Component that only supports a public loader.
o All sources are found inccomponent>/src, binaries in <components/{lib|classes}
o The component type com.zfabrik.api supports api.references and api.includes, etc.
o The component type com.zfabrik.java by default has a public reference to <module>/api

¢ There is a new component type com.zfabrik.test
o The test component is a reduced Java Component that only supports a private loader.
o All sources are found in <components>/src, binaries in <components/bin/{lib|classes}
o The component type com.zfabrik.test supports test.references and test.includes, etc.
o For test components, testing.references can access the private loader of the target
o A test component has a default testing.reference to <module>/impl

JavaComponentUtil.getJavaComponent is deprecated and replaced by JavaComponentUtil.getimplComponent and
JavaComponentUtil.getApiComponent
o All usages of JavaComponentUtil.getJavaComponent when looking for component implementations are replaced by
JavaComponentUtil.getimplComponent
o JavaComponentUtil.getimplComponent checks for <module>/impl and if that cannot be found falls back to
<module>/java
o JavaComponentUtil.getApiComponent checks for <module>/java and if that cannot be found defaults to <module>/api

¢ Eclipsoid resolves for <modules>/java and <module>/api
Eclipsoid supports two module templates:

o One with /java (legacy, pre 2.9)

o One with /api and /impl

Related issues:

Related to z2-Environment - Improvement #2081: Support a kotlin compiler addon New 28.09.2020
Related to z2-Environment - Improvement #2082: Support a clojure compiler addon New 28.09.2020
History

#1 - 05.04.2020 23:06 - Henning Blohm
- Description updated

#2 - 05.04.2020 23:12 - Henning Blohm
- Description updated

#3 - 28.09.2020 11:42 - Henning Blohm
- Related to Improvement #2081: Support a kotlin compiler addon added

#4 - 02.10.2020 16:17 - Henning Blohm
- Related to Improvement #2082: Support a clojure compiler addon added

#5 - 11.03.2021 21:35 - Henning Blohm

04.07.2025 2/3




- Status changed from New to In Progress

#6 - 11.07.2021 16:27 - Henning Blohm

- Target version changed from 2.9 to 2.10

#7 - 11.10.2022 21:57 - Henning Blohm

- Target version changed from 2.10 to 3.0

#8 - 23.01.2024 11:37 - Henning Blohm

- Status changed from In Progress to New

04.07.2025

3/3


http://www.tcpdf.org

